Irrigant flow within a prepared root canal using various flow rates: a Computational Fluid Dynamics study

C. Boutsioukis¹, T. Lambrianidis¹ & E. Kastrinakis²
¹Department of Endodontology, Dental School; and ²Chemical Engineering Department, School of Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece

Abstract

Aim To study using computer simulation the effect of irrigant flow rate on the flow pattern within a prepared root canal, during final irrigation with a syringe and needle.

Methodology Geometrical characteristics of a side-vented endodontic needle and clinically realistic flow rate values were obtained from previous and preliminary studies. A Computational Fluid Dynamics (CFD) model was created using FLUENT 6.2 software. Calculations were carried out for five selected flow rates (0.02–0.79 mL sec⁻¹) and velocity and turbulence quantities along the domain were evaluated.

Results Irrigant replacement was limited to 1–1.5 mm apical to the needle tip for all flow rates tested. Low-Reynolds number turbulent flow was detected near the needle outlet. Irrigant flow rate affected significantly the flow pattern within the root canal.

Conclusions Irrigation needles should be placed to within 1 mm from working length to ensure fluid exchange. Turbulent flow of irrigant leads to more efficient irrigant replacement. CFD represents a powerful tool for the study of irrigation.

Keywords: computational fluid dynamics, flow rate, irrigation, needle.

Received 16 June 2008; accepted 14 October 2008

Introduction

Irrigation of root canals with antibacterial solutions is considered an essential part of chemo-mechanical preparation (Haapasalo et al. 2005). Irrigation is complementary to instrumentation in facilitating removal of bacteria, debris and necrotic tissue (Lee et al. 2004a), especially from areas of the root canal that have been left unprepared by mechanical instruments (Gulabivala et al. 2005). The effectiveness of irrigation relies on mechanical flushing and the ability of irrigants to eliminate bacteria (Gulabivala et al. 2005) and dissolve tissue (Lee et al. 2004a).

Efficient debridement and successful destruction of microorganisms even depend on the irrigant’s penetration along the full length of the canal and on irrigant exchange (Salzgeber & Brilliant 1977, Druttman & Stock 1989). Consequently, irrigation dynamics should be considered when evaluating the effect of an irrigant on root canal contents (Gulabivala et al. 2005). The penetration of the irrigant and the flushing action created by irrigation are dependent not only on the anatomy of the root canal system, but also on the system of delivery, the depth of placement, and the volume and fluid properties of the irrigant (Ram 1977, Abou-Rass & Piccinino 1982, Moser & Heuer...
Conventional irrigation with a syringe and needle remains widely accepted (Ingle et al. 2002, Peters 2004). Classical endodontic handbooks refer to hand irrigation as a simple procedure (Ingle et al. 2002) and provide general guidelines in order to maximize irrigation efficiency and avoid extrusion of irrigant to the periapical tissue (Druttman & Stock 1989, Ram 1977, Haapasalo et al. 2005). However, in a recent study (Boutsioukis et al. 2007a) wide variations were found amongst endodontists concerning the irrigation procedure. Although poorly studied, there is a general uncertainty about the efficiency of irrigation in the narrow, most apical part of the canal (Senia et al. 1971, Vande Visse & Brilliant 1975, Ram 1977, Haapasalo et al. 2005). It has been argued that the difficulty in reaching the most apical region of the canal with large volumes of fresh irrigant may result in poorer performance of the irrigant (Druttman & Stock 1989, Haapasalo et al. 2005), but only speculation exists over the extent these factors influence the development of currents within the canal (Ram 1977, Abou-Rass & Piccinino 1982, Chow 1983, Druttman & Stock 1989, Sedgley et al. 2005, Zehnder 2006).

Earlier attempts to evaluate the flow of irrigants within the canal were based on macroscopic observations (Goldman et al. 1976, Krell et al. 1988), frequently of the displacement of a coloured dye by the delivered irrigant (Kahn et al. 1995), or on radiographic appearance of a partly radiopaque solution (Ram 1977, Salzgeber & Brilliant 1977, Abou-Rass & Piccinino 1982). Although these early attempts to evaluate the flow of irrigants developed our current knowledge regarding irrigation, they only described macroscopic events, and were frequently limited by the relatively poor ability of radiographs (Salzgeber & Brilliant 1977) or visual examination to detect the dynamics of fluid movement.

Recently applied methods such as real-time imaging of bioluminescent bacteria (Sedgley et al. 2004, 2005, Falk & Sedgley 2005, Nguy & Sedgley 2006) and studying the mechanical effect of irrigations on artificially placed debris in simulated irregularities with the aid of stereoscopic microscopes and digital images (Lee et al. 2004a,b, van der Sluis et al. 2005, 2006) have overcome these limitations and provided valuable data about the effect of irrigation on microbes and debris. However, these methods have provided little insight to the aetiology of these effects, that is, the flow pattern developed within the needle and root canal. Hsieh et al. 2007 showed dynamic flow conditions during irrigation with thermal image analysis. This method provided data on the flow of an irrigant within a root canal ex vivo. However, it may be necessary to assess whether fluid flow monitoring is affected by the simultaneous heat flux from the warm fresh irrigant to the cooler irrigant within the canal and the canal walls. The possibility that heat flux may occur at a rate similar to the irrigant flow rate cannot be discarded. In addition, the artificial change of the normal irrigant and root canal temperature could result in altered physical properties, such as decreased viscosity, affecting the results.

Computational Fluid Dynamics (CFD) represents a powerful tool to investigate flow patterns and physical and chemical phenomena by mathematical modelling and computer simulation (Tilton 1999, Arvand et al. 2005). Despite the fact that CFD was originally developed for industrial and engineering purposes, in recent years applications in the biomedical field have also attracted considerable attention (Xu et al. 2006), aided by the increasing power of computers (Politis et al. 2007). CFD has been previously applied to investigate several problems in the cardiovascular and the respiratory system (Pekkan et al. 2005, Yogananthan et al. 2005, Corno et al. 2006, Jung et al. 2006, van Tricht et al. 2006, Xu et al. 2006, Yang et al. 2006a,b, Politis et al. 2007).

The aim of this study was to investigate the effect of irrigant flow rate on the flow pattern within a prepared root canal, during final irrigation with a syringe and needle using a CFD model.

Materials and methods

Analysis of model geometry

The shape of the selected needle (30G KerrHawe Irrigation Probe, KerrHawe SA, Bioggio, Switzerland) was obtained through images from Stereoscopic Microscope (Fig. 1a). These images were calibrated using the needle external diameter, known from a previous study (Boutsioukis et al. 2007b). The cross-sectional areas and the perimeters were then obtained through standard computer image analysis with AutoCAD 2006 software (AutoDesk, San Rafael, CA, USA). Needle length was determined with precision calipers (accuracy 0.05 mm). These data were used to plot the needle perimeter (Fig. 1b).

The root canal was simulated as a geometrical frustum of cone 19 mm in length, with a diameter of...
0.45 mm (ISO size 45) at full working length, and a
diameter of 1.59 mm at the canal orifice, 19 mm
coronally. This shape is consistent with final canal
shaping with a rotary-driven Ni-Ti size 45 .06 taper
instrument (K3, Sybron Endo, Orange, CA, USA) used
at full working length in order to standardize the canal
shape, as described in a previous study (Boutsioukis
et al. 2007a). The apical terminus of the root canal,
was also simulated as an inverted frustum of cone with
a length of 0.5 mm connected with the original
frustum, to simulate the effect of a patency file used
during root canal preparation. The diameter of the
apical constriction was 0.3 mm and the diameter of the
apical foramen 0.35 mm (Fig. 2). Apical root canal
geometry was constructed according to data provided
in a recent study (Ponce & Fernandez 2003), in order to
simulate the shape of a maxillary central incisor’s root
канал. The needle was considered to be placed 3 mm
short of the working length, centered within the canal
and immovable.

Mesh generation

The pre-processor software Gambit 2.2 (Fluent Inc.,
Lebanon, NH, USA) was used to build the 3-D geometry
and the mesh. Due to existing symmetries, only half of
the geometry was studied (Fig. 3). A structured hexa-
hedral mesh was constructed with higher density in the
areas where high gradients of velocity and turbulence
were anticipated, namely near the needle exit.

A grid-independency check was performed to deter-
mine the minimum number of computational cells

Figure 1 (a) Part of the 30-G side vented needle (KerrHawe
Irrigation Probe, KerrHawe SA, Bioggio, Switzerland) contain-
ing the needle outlet. (b) The same part of the needle-model.

Figure 2 Geometrical characteristics of
the root canal model used.
required for a grid-independent flow simulation and ensure reasonable use of computational resources. A coarse mesh (369,688 cells) was initially constructed. Preliminary simulations were performed with identical boundary and initial conditions, with inlet velocity of 36 m sec\(^{-1}\), corresponding to Case E (Table 1). Velocity as well as turbulence quantities were examined at several cross-sections along the domain. The initial mesh was gradually refined in order to improve accuracy until further refinement produced insignificant change in the results. The final mesh consisted of 1,279,856 cells (Mean cell volume 6.4885 \(10^{-6}\) mm\(^3\)). The mesh resolution satisfied the near-wall mesh guidelines proposed for the selected turbulence model. This mesh was used for all cases studied.

Boundary and operating conditions

Boundary conditions were set in order to simulate a final irrigation under routine clinical conditions. No-slip boundary conditions were applied to the solid surfaces, which are the walls of the canal and of the needle, under the hypothesis of rigid, smooth and impermeable walls. A symmetry boundary condition was used for the lateral side of the flow domain, at the z-y plane. The fluid flows in from the distal end of the needle and out from the orifice of the root canal. The canal and needle are assumed to be completely filled with the irrigant.

A velocity inlet boundary condition was selected for the entrance of the needle lumen, distally to the root canal. A constant axial irrigant velocity with a flat velocity profile was imposed at the inlet for each of the five cases studied (Table 1). The range of clinically realistic irrigant flow rates was determined in a previous study (Boutsioukis et al. 2007a). Flow rate values were converted to inlet velocity values. Turbulence intensity (ratio of the magnitude of the RMS turbulent fluctuations to the inlet velocity) at the inlet was set to 5% and hydraulic diameter was defined as equal to the actual needle internal diameter. A pressure outlet boundary condition was imposed at the root canal orifice to allow flow of the irrigant away from the domain. Atmospheric pressure was assumed at the outlet.

The irrigation fluid, sodium hypochlorite 1% aqueous solution, was modelled as an incompressible, Newtonian fluid, an assumption that is generally accepted for pure water and sparse aqueous solutions (Tilton 1999), with density, \(\rho\), equal to 1.04 g cm\(^{-3}\) and viscosity, \(\mu\), 0.986 \(10^{-3}\) Pa s. Irrigant density and viscosity were selected to match standard values reported in the literature (Guerisoli et al. 1998). Gravity was included in the flow field at the direction of the negative-z axis.

Initial conditions

The domain was initialized with the irrigant at 50% of the inlet z-velocity, whilst x-velocity, y-velocity and gage pressure were set to zero. Initial values for the

Table 1 Inlet conditions for the five cases studied

<table>
<thead>
<tr>
<th>Case</th>
<th>Inlet velocity (m sec(^{-1}))</th>
<th>Irrigant flow rate (mL sec(^{-1}))</th>
<th>Reynolds number at the needle inlet</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>0.02</td>
<td>177</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>0.14</td>
<td>1063</td>
</tr>
<tr>
<td>C</td>
<td>12</td>
<td>0.26</td>
<td>2126</td>
</tr>
<tr>
<td>D</td>
<td>24</td>
<td>0.53</td>
<td>4253</td>
</tr>
<tr>
<td>E</td>
<td>36</td>
<td>0.79</td>
<td>6379</td>
</tr>
</tbody>
</table>
turbulence kinetic energy and turbulence dissipation rate were calculated from the corresponding values at the needle inlet, in order to avoid a ‘cold start’.

Solver setup

The commercial CFD code FLUENT 6.2 (Fluent Inc., Lebanon, NH, USA), was used to set up and solve the problem and to analyze the results. The numerical solution method uses a finite volume approach applied to an unstructured mesh. A steady and isothermal flow was assumed. The governing time-averaged, three-dimensional, incompressible Reynolds – Averaged Navier-Stokes (RANS) equations were solved by a segregated implicit iterative solver. A low-Reynolds RNG - modified k – ε turbulence model was used for all cases. All transport equations were discretized to be at least second-order accurate in space. The convergence criterion was at least \(10^{-8}\) of the maximum scaled residuals. Pressure, velocity and turbulence quantities in selected areas of the flow domain were also monitored to ensure adequate convergence. Computations were carried out on a Windows XP Personal Computer with a 3 GHz single Intel Pentium IV Hyper-threading processor and 2 GB of RAM.

A series of computations for five different inlet velocities were performed (Table 1). Results were analyzed and flow fields computed for the five cases were compared.

Lagrangian particle tracking was performed as a post-processing operation, in which the routes of massless particles were tracked throughout the flow domain after release from the inlet of the needle.

Results

The effect of inlet needle velocity appeared to be highly significant in determining the flow field within the canal. Lower velocities and similar flow patterns were observed in the middle and coronal third of all cases, regardless of inlet velocity, indicating a laminar flow. Differences were mainly noticed in the apical third.

Overall the highest velocities were observed within the needle lumen (Fig. 4). Velocities dropped by an order of magnitude at the needle outlet, due to the relatively sudden expansion of the area downstream of the outlet. Maximum irrigant velocities within the root canal were primarily observed in the vicinity of the needle outlet. The velocity magnitude increased as the irrigant inlet velocity increased, as expected.

As the irrigant approached the needle outlet, it primarily followed the main flow stream (Fig. 4) towards the root canal. Irrigant within the distal part of the needle, just apically to the outlet, exhibited an almost stagnant behaviour in all cases. A jet of irrigant was formed at the needle outlet, directed towards the apex with a divergence of approximately 30 degrees. This jet was more intense and obvious in higher velocity cases. Irrigant flowing out of the needle followed a curved path around the needle tip, where a small anticlockwise vortex was observed, and was finally directed towards the canal orifice. In the area
just coronal to the needle outlet low irrigant velocities were observed and reverse flow regions were formed, where irrigant flows towards the apex rather than the orifice (Fig. 4).

According to the turbulence intensity and turbulent viscosity ratio (ratio of the turbulent viscosity of the fluid computed using the turbulence model to the laminar viscosity) distribution, mostly laminar flow was developed in cases A and B, whilst increasing amounts of low Reynolds turbulence was developed within the needle lumen, near the needle outlet and immediately in front of the needle tip in cases C–E (Fig. 5). No turbulent phenomena were observed coronally to the needle outlet in any of the cases studied.

Stream-lines indicating the route of mass-less particles released downstream from the needle inlet coloured according to velocity magnitude depict the flow of the delivered irrigant in the canal (Fig. 6). The main flow appeared to spread laterally around the needle whilst following a curved path around the needle tip, with limited apical penetration and was finally directed towards the canal orifice. Overall, very limited irrigant replacement could be identified in the apical part of the canal. Increase of the inlet velocity led to more efficient irrigant replacement. Nevertheless, this effect was limited to 1–1.5 mm apically to the needle tip, even with maximum inlet velocity studied (case E). Particle trajectories verified that irrigant flow was mostly laminar in case A and B, whereas increasing turbulence presented in case C–E, around the needle outlet and immediately apically to the needle tip.

Analysis of the z-component of irrigant velocity along the longitudinal axis of the root canal (z-axis) confirmed the increasing depth of irrigant replacement, which in any case did not exceed 1–1.5 mm apically to the needle tip (Fig. 7).

Discussion

In the present study, irrigant flow in a root canal with various inlet velocities was numerically simulated, using a previously validated commercial CFD code. This paper represents an initial attempt to apply a well-established engineering method to the investigation of an endodontic problem.

Average maxillary central incisor length has been reported to be 23.3 mm (Ingle et al. 2002). Nevertheless, due to geometrical simplification, the length of the root canal part that could be modelled as a frustum of cone had to be determined. During a preliminary study, the average length of the root canal of ten randomly selected maxillary central incisors was determined as the distance between the apical foramen and the most

![Figure 5 Pairs of contours of turbulence intensity (left) and turbulent viscosity ratio (right) along the symmetry plane (z-y) of the domain for the cases studied. The needle wall is coloured red. Low-Reynolds turbulence was noticed within the needle lumen, near the outlet and immediately in front of the needle tip in cases C–E.](image-url)
apical side of the standard access cavity. This resulted in an average length of 19.5 mm.

In the current study, the apical foramen was simulated as an impermeable and rigid wall, due to existing limitations of the model applied. Such an assumption excludes the possibility of irrigant extrusion towards the periapical tissue, an incident that is known to occur clinically and has been associated with forceful delivery of the irrigant (Vande Visse & Brilliant 1975, Ram 1977, Druttman & Stock 1989, Lambrianidis 2001, Lambrianidis et al. 2001, Tinaz et al. 2005) and with the presence of periapical lesions (Salzgeber & Brilliant 1977). It seems reasonable to assume that extrusion of irrigant takes place if irrigant pressure at the apical foramen exceeds the back-pressure from the periapical area. Thus, in cases of low irrigant flow rate, when low pressures are anticipated, the assumption of an impermeable wall at the apical foramen may be more realistic than the assumption of zero back-pressure usually employed in extrusion studies (Vande Visse & Brilliant 1975, Lambrianidis et al. 2001, Tinaz et al. 2005). Yet, in high flow rate cases, tissue back-pressure may be overcome and a certain amount of irrigant could be extruded to the periapical area.

In the present study the root canal was assumed to be completely filled with the irrigant, in order to simplify the model. This assumption may not be

Figure 6 Stream-lines indicating the route of mass-less particles released downstream from the needle inlet and coloured according to velocity magnitude (m sec$^{-1}$). Particle trajectories provide visualization of the fresh irrigant flow.
completely realistic, as dentine chips, debris or other fluids may be present in certain areas of the canal. Furthermore, in maxillary teeth there is a possibility of air bubble entrapment in the most apical part of the root canal.

Average flow rate of a fluid (Q) within a pipe (such as the needle lumen) is defined as:

$$Q = U \cdot S$$

where U is the average fluid velocity and S is the area of the cross section of the pipe (Hughes & Brighton 1999). Inlet velocity values for the five cases studied (Table 1) were calculated from flow rate data (Boutsioukis et al. 2007a) using this equation.

Development of laminar or turbulent flow within an internal domain depends primarily on the Reynolds number (Re), a non-dimensional quantity which briefly combines four parameters influencing the flow: fluid density (ρ) and viscosity (μ), average fluid velocity (u) and characteristic domain diameter (D).

$$Re = \frac{\rho \cdot u \cdot D}{\mu}$$

In the present study Re varied between 177–6379 for the five cases and was calculated at the needle inlet (Table 1). Re in the rest of the domain is probably lower, owing to the fact that as the flow area increases, the velocity has to decrease, due to mass conservation (Kurtcuoglu et al. 2007). Calculated values are considered low or moderate and characterize the flow as laminar or transitional.

The assumption of smooth walls on both the root canal and the needle is inconsistent with real dentine anatomy and to the findings of a previous study (Boutsioukis et al. 2007b). Wall roughness does not affect laminar flow that was observed in the middle and coronal third of the canal. Conversely it increases the resistance when the flow is turbulent, such as the one observed near the needle outlet in some cases, modifying the flow pattern. This effect depends on the relative height of the irregularities compared to the domain diameter and on the Re (McCabe et al. 2004).

It has been recommended that upon completion of canal preparation the canal contents should be flushed by means of a small-diameter irrigation needle (27 or 30G), with a safety tip (side-vented) placed in the apical third of the canal, even to working length or 1 mm short of it (Abou-Rass & Piccinino 1982, Zehnder 2006). Small-diameter irrigation needles seem to be more effective because they can reach further into the canal and thus may result in better exchange and cleaning (Senia et al. 1971, Chow 1983), as the overall effectiveness of irrigation is largely determined by the relative diameter of the irrigating needle and the canal (Ram). Small-diameter needles (30G) have been also
reported to provide significantly better irrigant exchange than larger-diameter needles (Druttman & Stock 1989). A 30-gauge side-vented needle with a safety tip was employed in this study.

The release of mass-less particles within the flow (Fig. 6) is considered a procedure that aids enhanced visualization of the flow pattern. Such particles are expected to follow the path of the fluid with accuracy (Tilton 1999, Fluent Inc. 2005). Mass-less particle trajectories do not represent paths of dentine shavings, which have very different densities from the irrigant. However, they might represent possible paths of microbes, which have densities very similar to the irrigant and limited volume.

Irrigant replacement in any part of the flow domain can be accomplished solely by flow of the irrigant already present in the canal towards the canal orifice, which is depicted by the magnitude of velocity along the longitudinal axis of the root canal (z-component of velocity). Therefore, the distribution of z-velocity along the longitudinal axis of the root canal (z-axis) indicates the amount of irrigant replacement occurring at different levels of the root canal (Fig. 7).

The effect of flow rate on the irrigant replacement, as depicted by the results of this study appears significant. Minimum irrigant replacement in the apical third that was limited to less than 1 mm apically to the needle tip was identified in cases A–C through analysis of streamlines (Fig. 6) and z-velocity distribution (Fig. 7). Irrigant replacement extended to 1–1.5 mm apically to the needle tip in cases D and E. It is possible that increasing inlet velocity as well as increasing amounts of turbulence developed enhanced irrigant replacement in the cases studied. However, cases A–C model the effect of the vast amount of flow rates used by clinicians, whilst cases D and E model extreme flow rate conditions rarely encountered in clinical practice (Boutsikakis et al. 2007a). Therefore, the requirement for placement of the needle tip to within 1 mm from working length (Abou-Rass & Piccinino 1982, Zehnder 2006) should be stressed.

Turbulence intensity and turbulent viscosity ratio depict the amount of turbulence developed in a flow field and whether it significantly influences the resulting flow. When examining wall-bounded flows with the RANS approach, turbulent viscosity ratios over 100 are generally considered to indicate a fully developed turbulent flow (Fluent Inc. 2005). Such condition could not be identified in any of the cases studied. Turbulent flow, by means of the chaotic eddy motion associated with velocity fluctuation, is conducive to rapid mixing and, therefore, is the preferred flow regime for mixing (Tilton 1999). Such mixing of fresh irrigant with the irrigant already inside the root canal is necessary to ensure maximum irrigant replacement and efficiency in debridement and antibacterial activity (Salzgeber & Brilliant 1977).

An early attempt to simulate in vitro the irrigation of root canals and quantify the constant replenishment of the irrigant in primary and secondary canals during ultrasonic and sonic agitation led to the conclusion that irrigant cannot be adequately exchanged with new solution, even in secondary canals with diameters in the range of 1 mm. Moreover, it was verified that flow rate of the irrigant poses a significant effect on irrigant replacement throughout the canal (Nanzer et al. 1989). Results of the present study confirmed that irrigant flow rate significantly influences the flow pattern within the root canal.

Controversial results have been published regarding the extent of irrigant exchange apically to the tip of a side-vented needle. It has been reported that the solution does not reach further than 1 mm apically from the needle tip of 30G needles during irrigation (Zehnder 2006). The present results are consistent with that study, regarding the use of flow rates in the range of 0.02–0.26 mL sec⁻¹ (cases A–C). However, another study concluded that the zones of clearance beyond the tip of side-vented needles (25, 28 and 30G) were significant, indicating that highly effective canal clearance occurred without having to place the tip of the needle at the apical foramina. Moreover the effectiveness of these needles seemed related to their design, creating turbulence around and beyond the end of the needle (Kahn et al. 1995). According to the present findings, such irrigant replacement occurred only when flow rates in the range of 0.53–0.79 mL sec⁻¹ were used (cases D and E), values that do not represent average clinical conditions (Boutsikakis et al. 2007a). Neither of these studies reported flow rate of the irrigant used or whether it was standardized.

Stagnant behaviour of the irrigant within the most distal part of the needle lumen was detected in all cases studied. This observation questions the needle design, as irrigant stagnation could favor crystal accumulation within the needle lumen (McCabe et al. 2004). A possible explanation would be to avoid forceful extrusion of the irrigant to the periapical tissue in case of needle binding to the canal wall.

Results of the present study cannot be extrapolated to narrower root canals. In such a canal the effect of
any presently available irrigation system may be limited. Intermittent agitation of the canal content with a small size instrument (Druttman & Stock 1989, Kahn et al. 1995, Spangberg & Haapasalo 2002) or a gutta-percha cone (Huang et al. 2008, McGill et al. 2008) have been proposed to improve canal cleanliness. Further studies are needed to determine the flow pattern in narrow and curved root canals.

Thus, in terms of replacement efficiency, according to the results of the present study a flow rate of 0.01–0.26 mL sec\(^{-1}\) should be combined with placement of the irrigation needle to within 1 mm from working length, in order to achieve acceptable irrigant exchange. Flow rates of 0.53–0.79 mL sec\(^{-1}\) offer an additional advantage of 0.5 mm but cannot be regarded as average clinical conditions. Acceptable values might vary when different canal anatomy or different needles are considered.

Conclusions

Irrigant flow rate appears to be highly significant in determining the flow pattern within the root canal. Irrigant replacement apical to the needle tip was not satisfactory for any of the flow rates studied. Development of turbulent flow is desirable as it leads to more efficient irrigant replacement. Computational Fluid Dynamics represents a powerful tool for the study of irrigations.

This study was submitted as a Dissertation to the Department of Endodontology, Dental School, Aristotle University of Thessaloniki, in partial fulfillment of the requirements for the Postgraduate Degree of Specialization in Endodontology.

References

