Use of cone-beam computed tomography to evaluate root and canal morphology of mandibular molars in Chinese individuals

R. Zhang1, H. Wang1, Y.-Y. Tian1, X. Yu1, T. Hu1 & P. M. H. Dummer2

1State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; and 2School of Dentistry, Cardiff University, Heath Park, Cardiff, UK

Abstract

Aim To evaluate the root canal configuration of permanent mandibular first and second molar teeth in a Chinese subpopulation using cone-beam computed tomography (CBCT).

Methodology Patients who required CBCT radiographic examinations as part of their routine examination, diagnosis and treatment planning, were enrolled. Cases where the anatomy was compromised by physiological or pathological processes and the original root canal morphology was not clear were excluded. A total of 389 healthy, untreated, fully developed mandibular molars in Chinese individuals were included. The following observations were recorded: (i) the number of roots and their morphology; (ii) the number of canals per root; (iii) the canal configuration; (iv) the frequency of distolingual roots in the mandibular first molars and (v) the frequency of C-shaped canals in the mandibular second molars. The root canal configurations were classified according to the method of Vertucci (Oral Surgery, Oral Medicine, and Oral Pathology 58, 1984, 589).

Results The majority of mandibular molars (70% of first molars, 76% of second molars) had two separate roots; however, three roots were identified in 29% of first molars. C-shaped roots occurred in 29% of second molars. Three canals were found in 56% of mandibular first molars and 43% had four canals. In the mandibular second molars, 46% had three canals and 38% had two canals. Most distal roots had a simple type I configuration, whereas mesial roots had more complex canal systems, with more than one canal. There were seven variants of the root canal morphology amongst the mandibular first molars and eight variants amongst the mandibular second molars, without considering the various root types.

Conclusions Three-rooted mandibular first molars and C-shaped mandibular second molars occurred frequently in this Chinese population. CBCT is an effective tool for the detection of additional distolingual roots and C-shaped roots/canals, and it is a valuable aid for dentists providing root canal treatment.

Keywords: cone-beam computed tomography, C-shaped root and canal configuration, distolingual root, mandibular molars, root canal system.

Received 19 April 2011; accepted 14 May 2011

Introduction
The study of root and canal morphology is important not only for endodontic treatment but also for anthropological analyses (Dahlberg 1965, Vertucci 1984, Gulabivala et al. 2002). Variations in the root canal
The morphology of mandibular molars are thought to be racially and genetically determined (Curzon 1974, Ahmed et al. 2007). Therefore, it is necessary to investigate variations in tooth anatomy and their characteristic features in different racial groups (Sperber 1999, Neelakantan et al. 2010). Mandibular molars in Chinese populations are more variable than those of others, typically including a high prevalence of distolingual roots in the mandibular first molars and C-shaped canals in the mandibular second molars (Gulabivala et al. 2002, Huang et al. 2007, 2010, Pattanshettil et al. 2008, Fan et al. 2009). For example, it has been reported in studies of Chinese populations that 22% of mandibular first molars have a distolingual root (Huang et al. 2007, 2010).

In the clinical context, awareness of the presence of a distolingual root in a mandibular first molar is a key to successful root canal treatment and periodontal care (Gulabivala et al. 2002, Huang et al. 2007), especially in complex cases.

Another reported variation, which has a relatively high prevalence in the mandibular second molars of Chinese and Lebanese populations, but is seldom found in Caucasian populations, is the ‘C-shaped root and canal configuration’ (Walker 1988, Weine et al. 1988, Yang et al. 1988, Manning 1990b). On traditional periapical radiographic films, the recognition of C-shaped canals is challenging because of the two-dimensional nature of the images produced, inevitable geometric distortion and anatomical noise.

Staining and clearing are the techniques most commonly used to study root and canal morphology (Pineda & Kuttler 1972, Gulabivala et al. 2001, Ng et al. 2001, Alavi et al. 2002, Awawdeh et al. 2008). However, a sufficient sample size is essential in such studies, so that any findings can be applied to the whole population (Gulabivala et al. 2001, Wasti et al. 2001). It is often difficult to collect sufficient numbers of extracted teeth of known origin for such laboratory-based investigations. Furthermore, most extracted mandibular molars collected are severely compromised, which results in difficulties in determining accurately the tooth notation: an additional negative impact if only sound teeth are selected is selection bias.

In vivo studies with operating microscopes (Sempira & Hartwell 2000) and conventional radiography (Omer et al. 2004) are undertaken frequently to evaluate tooth anatomy. Previous studies (Tu et al. 2007, Schäfer et al. 2009) have suggested that three-dimensional radiographic techniques, such as computed tomography (CT) scans, could offer a more accurate method for these investigations. Recently, cone-beam computed tomography (CBCT) images have been found to be useful and accurate in detecting periapical lesions and assessing root canal morphology (Tsiklakis et al. 2005, Nakata et al. 2006, Løft-Hag-Hansen et al. 2007, Zhang et al. 2011). CBCT has also been used to estimate the inter-orifice distances of root canals in three-rooted mandibular molars in Taiwanese individuals (Tu et al. 2009). As an emerging technology in endodontics, CBCT, with its lower radiation and higher resolution than traditional CT scans (Arai et al. 2000, Patel 2009, Patel et al. 2009), has produced valid root canal details in three dimensions for diagnosis and prognosis in the context of endodontic therapy (Cotton et al. 2007, Matherne et al. 2008).

The aims of this study were to identify the root canal morphology of mandibular first and second molars and to explore the distolingual roots of mandibular first molars and the C-shaped canals in Chinese mandibular second molars using CBCT.

Materials and methods

Patients

In total, 211 consecutive patients, who were referred to the West China Hospital of Stomatology at Sichuan University, Chengdu, China, between May 2009 and September 2010, were enrolled. The patients included those suffering facial trauma or odontogenic tumours, who required a preoperative assessment for implants or who needed orthodontic treatment for an ectopic impacted tooth. The CBCT images were taken as part of the routine examination, diagnosis and treatment planning of these patients. Understanding and written consent of each patient was obtained, and the study was approved by the Ethics Committee of the West China Hospital. To obtain clear images of the mandibular molar teeth, those teeth with physiological and/or pathological defects were excluded. Teeth were selected according to the following criteria: (i) mandibular permanent molars with no periapical lesions; (ii) no root canal treatment; (iii) no root canals with open apices, resorption or calcification and (iv) the CBCT images of good quality.

Radiographic techniques

The CBCT images were taken using a 3D Accuitomo Tomograph (Morita, Kyoto, Japan), operating at...
80 kV and 5.0 mA, with an exposure time of 17 s. The voxel size was 0.125 mm and the slice thickness was 1.0 mm. The scans were produced according to the manufacturer’s recommended protocol. According to the examination requirements, a field of view of 40 × 40 mm or 60 × 60 mm was used. All CBCT exposures were performed by an appropriately licensed radiologist, with the minimum exposure necessary for adequate image quality. The lowest-dose radiation and the smallest field of view were ensured.

Evaluation of the images

The CBCT images were analysed with the inbuilt software (i-Dixel One Volume Viewer 1.5.0) in a Dell Precision T5400 workstation (Dell, Round Rock, TX, USA), with a 32-inch Dell LCD screen with a resolution of 1280 × 1024 pixels in a darkroom. The contrast and brightness of the images were adjusted using the image processing tool in the software to ensure optimal visualisation. An oral radiologist and an endodontist evaluated concurrently all the images to reach a consensus in the interpretation of the radiographic findings.

The teeth involved were investigated radiographically by CBCT for (i) number of roots and their morphology; (ii) number of canals per root; (iii) root canal configuration (Vertucci 1984); (iv) number of distolingual roots in the mandibular first molars; (v) C-shaped canals in the mandibular second molars and (vi) primary variations in the morphology of the root canal systems (Tables 1 and 2):

For the purposes of the study, the type of canal system in each variant was not classified further.

Results

Of the patients enrolled, 110 were women and 101 were men, with a mean age of 37 years (range 18–57 years). In total, 389 teeth (232 mandibular first molars and 157 mandibular second molars) were analysed.

Mandibular first molars

The majority (70%) of mandibular first molars had two separate roots, with 29% having three roots: only 1 four-rooted tooth was identified. When a third root was present, it was always on the lingual aspect of the main distal root. In total, 56% of the mandibular first molars had three canals, 43% had four canals and only four teeth had two canals.

Whether there was a distolingual root or not, the majority (84%) of the distal roots had a simple Vertucci type I configuration, whereas the canal system of the mesial roots was more complex. Of the 232 mandibular first molars, 220 (95%) mesial roots contained two canals, amongst which type IV (81%) and type V (15%) were the most prevalent.

Overall, 30% of these teeth had distolingual roots. All of the distolingual roots had the type I configuration. Of the 69 teeth with a distolingual root, 75% of the mesial roots were type IV, followed by type V (6.7%).

There were seven variants (Fig. 1a,b) in the root canal morphology of the mandibular first molars, without considering further the classification in each root. The distributions and percentages of the seven categories of variants in the root canal anatomy of the mandibular first molars are listed in Table 2.

<table>
<thead>
<tr>
<th>Variant</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>4 2 122 3 4 5 6 7</td>
</tr>
<tr>
<td>Percentage</td>
<td>1.7 0.9 52.6 15.1 2.2 27.2 0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variant</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>4 2 122 3 4 5 6 7</td>
</tr>
<tr>
<td>Percentage</td>
<td>1.7 0.9 52.6 15.1 2.2 27.2 0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variant</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>4 2 122 3 4 5 6 7</td>
</tr>
<tr>
<td>Percentage</td>
<td>1.7 0.9 52.6 15.1 2.2 27.2 0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variant</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>4 2 122 3 4 5 6 7</td>
</tr>
<tr>
<td>Percentage</td>
<td>1.7 0.9 52.6 15.1 2.2 27.2 0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variant</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>4 2 122 3 4 5 6 7</td>
</tr>
<tr>
<td>Percentage</td>
<td>1.7 0.9 52.6 15.1 2.2 27.2 0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variant</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>4 2 122 3 4 5 6 7</td>
</tr>
<tr>
<td>Percentage</td>
<td>1.7 0.9 52.6 15.1 2.2 27.2 0.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variant</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>4 2 122 3 4 5 6 7</td>
</tr>
<tr>
<td>Percentage</td>
<td>1.7 0.9 52.6 15.1 2.2 27.2 0.4</td>
</tr>
</tbody>
</table>
Mandibular second molars

Most of the mandibular second molars (76%) had two separate roots, whereas 22% had one root. Only 2-second molars in the present study had three roots. The majority of mandibular second molars had three canals (46%) or two canals (38%).

In the two-rooted cases, the majority (97%) of the distal roots had a type I canal morphology, whereas 42% of the mesial roots had type I canal morphology. The majority of mesial roots with two canals had a type IV (65%) configuration, followed by type V (27%).

Of the 157 mandibular second molars, 29% had C-shaped canals. There were eight variants (Fig. 2a,b) in the root canal morphology of the mandibular second molars, without considering further the classification in each root. The distributions and percentages of the

Figure 1 (a) Illustration showing the categorisation of the seven variants in mandibular first molars. (b) Cone-beam computed tomography images showing the categorisation of the seven variants in mandibular first molars found in this study. The white circles indicate the examined tooth.

(a)

Variant 1 Variant 2 Variant 3 Variant 4

Variant 5 Variant 6 Variant 7

(b)

Variant 1 Variant 2 Variant 3 Variant 4

Variant 5 Variant 6 Variant 7
eight categories of variants in the root canal anatomy of the mandibular second molars are listed in Table 2.

Discussion

The patients who were enrolled in this study required the CBCT examination for valid diagnostic or treatment reasons, including for ectopic impacted teeth and pre-implant evaluation of bone mass. For such cases, the traditional CT examination would have led to a higher radiation dose, so CBCT was a reasonable alternative. From these cases, images that had mandibular molars were selected for the present study. Several factors will affect evaluation of the morphology of root canals including:

- canal obliteration and internal resorption:

![Figure 2](image-url)
• filling materials that will create noise (artefacts) on the CBCT images;
• long-term periapical disease that may result in resorption and destroy root apices.

In the present study, to ensure the integrity of the original morphology of the root canals, only mandibular molar teeth that were healthy, fully developed and untreated were included.

Mandibular first molars

The presence of a third root is a typical variation in Chinese mandibular first molars. The high prevalence (29%) of third roots in the present study is consistent with the previous studies (Huang et al. 2007, 2010), which reported a slightly lower percentage (22%) in a Chinese subpopulation in Taiwan. This is higher than the 13% reported for a Thai population (Gulabivala et al. 2002) and the 10% reported for a Burmese population (Gulabivala et al. 2001), using a canal staining and clearing technique. The incidence of the extra distolingual roots in the Caucasian population is not more than 5% (Curzon 1973, 1974, Vertucci & Williams 1974, Schäfer et al. 2009). These differences may reflect race-based variations. The predominance of two roots and three canals (54%) in Chinese mandibular first molars is, in general, similar to the observations of Huang et al. (2007, 2010).

Generally, the third root was located on the lingual side of the distal aspect of the tooth as shown in Fig. 3, which is consistent with the results of Walker (1988) and Gulabivala et al. (2002). Those authors identified the distolingual root in the mandibular first molars and proposed that it should not be considered a developmental anomaly, but rather a genetic trait. This differs from a previous study (Sperber & Moreau 1998) that reported a third root on the buccal aspect.

On conventional periapical radiographic images, it is difficult to identify the presence of a distolingual root on a mandibular molar, especially when the distal roots overlap to give the illusion of one root. Therefore, it is important to suspect a second distal root in Chinese patients and, in addition, it is advisable to search for additional orifice when the initial preparation and debridement of the pulp chamber has been completed.

All of the distal roots were classified as Vertucci type I. The high prevalence of the Vertucci type I canal configuration in the distal canals is consistent with the previous observations in Chinese populations (Gulabivala et al. 2001). However, the mesial roots were more variable, with 12 type I, 5 type II, 5 type III, 177 type IV, 32 type V and 1 type VII roots. The mesial roots displayed great variation in canal configuration, consistent with other studies (Barker et al. 1974, Vertucci 1984). In teeth with distolingual roots, 70% of the mesial roots had a type IV configuration, and in these teeth, the majority of mesial canals ended in separate foramina. The presence of a distolingual root was associated with variability in the root morphology, including the number of roots, the number of canals per root and the root types.

Interestingly, a mandibular first molar with four roots and one separate canal in each root was identified along with four mandibular first molars with two separate canals in two roots. Other variations in the root canal morphology of the mandibular first molar are possible (Sperber & Moreau 1998, Chen et al. 2009), and particular attention must be paid to this during treatment.

Mandibular second molars

The prevalence of two-rooted second molars was higher than those reported for other populations (Weine et al. 1988, Manning 1990a, Gulabivala et al. 2001, 2002, Ahmed et al. 2007). In the present study, 29% of mandibular second molars had C-shaped canals, consistent with the previous studies of the root canal anatomy of mandibular second molars in Japanese, Chinese and Hong Kong Chinese populations (Yang et al. 1988, Huang et al. 2010), in which high prevalences of C-shaped roots and canals (14%–52%) were reported. In the present study, the prevalence of 29% in Chinese mandibular second molars falls within the range previously reported, although it is a little higher than some (Huang et al. 2007, 2010, Tu et al. 2007, 2009). C-shaped root and canal configurations were seldom found in Caucasian populations (Vertucci 1984).

Research into root and canal morphology of mandibular second molars is important in tracing the racial origins of populations. The most common morphology is the two-rooted tooth, with type IV and type I canal systems predominating in the mesial and distal roots, respectively, as shown in Fig. 4. This has been reported as a Mongoloid trait (Gulabivala et al. 2002).

The C-shaped root canal configuration is considered to be complex (Vertucci & Williams 1974, Loh 1990). The present investigation revealed that 57%, 29% and 14% of the C-shaped roots had a single canal, two canals and three canals, respectively. The C-shaped roots showed wide variations in their canal
configurations, consistent with other reports (Vertucci & Williams 1974, Loh 1990, Gulabivala et al. 2001, 2002, Song et al. 2010). The high incidence of lateral canals, transverse anastomoses, apical deltas and irregularities associated with C-shaped canals makes it difficult to shape, clean and fill the root canal system (Melton et al. 1991).

C-shaped roots may appear as a single, fused root or as two distinct roots with a communication. Clinically, C-shaped root canals have often, but not always, been recognized because of the C-shaped canal orifice (Yang et al. 1988). However, CBCT can provide an accurate image with which the dentist can evaluate the entire canal system, which may assist the endodontic management of C-shaped roots.

Clinical significance

It is difficult to detect the third roots of mandibular molars with conventional radiography because the images of the roots overlap and the roots themselves are narrow. Moreover, branching of the canals may not be obvious, especially if they are fine. An angled view (vertically and horizontally) may be helpful (Cooke & Cox 1979), but achieving such a view is often difficult. If adjacent teeth, restorations or implants are present, there is even more overlap, reducing the clarity of the radiographic image. When root canal treatment is considered, special attention to the extra distolingual roots is necessary, especially when they are smaller than the other roots and are curved (Vertucci et al. 2006). Clearly, the failure to locate and negotiate the narrow additional distolingual canal may result in treatment failure (Gulabivala et al. 2002).

When C-shaped canals are visualized on preoperative radiographs (Grocholewicz et al. 2009), it is possible to debride and fill the system. However, the radiographic appearances of C-shaped roots in mandibular second molars can be diverse, depending on the exact nature and orientation of the root. It may appear as a single, fused root or as two distinct roots with a communication. When it appears as two distinct roots with a communication, the C-shaped canal may not be easily recognized on conventional periapical films (Huang...
et al. 2010). Although Cooke & Cox (1979) considered it impossible to diagnose a C-shaped canal, CBCT now makes this more predictable (Fig. 4). C-shaped root and canal configurations are challenging in terms of diagnosis, instrumentation and filling. They present a complex and irregular space containing potentially infected soft-tissue remnants or debris that may escape normal cleaning and filling procedures, especially when the C-shaped orifice does not continue to the apical third of the root (Cooke & Cox 1979, Barril et al. 1989, Jerome 1994, Jafarzadeh & Wu 2007). Proper management and additional effort are required to accomplish a successful root canal treatment.

Various techniques have been adopted to evaluate canal morphology, and it has been reported that the most detailed information can be obtained following demineralization and staining of extracted teeth (Vertucci 1984, Neaverth et al. 1987, Sieraski et al. 1989). However, clinically, CBCT is a good option because it can detect most distolinguinal roots and C-shaped canals, and it is regarded as an excellent method for the three-dimensional evaluation of root canal morphology. Examination of the fine details, together with the Vertucci classification (Vertucci 1984), can be taken into consideration. The quality of CBCT is sufficiently high to visualize root canal morphology for clinical endodontic treatment.

Although the present study indicates that CBCT is helpful for the investigation of root canal morphology and the final root filling, over-exposure to radiation is a risk. In simple cases, when root canal assessment is possible from traditional periapical images or clinical procedures, the use of CBCT is unnecessary. When there are abnormal findings on traditional periapical films and/or variations detected with magnification in the clinical setting, it may be impossible to evaluate the root canal system effectively. In these situations, it is necessary and sensible to adopt CBCT for further diagnosis, whilst at the same time ensuring that the patients’ exposure to radiation is kept as low as possible.

Conclusions

The root and canal anatomy of 389 Chinese mandibular molars was investigated using CBCT. Three-rooted mandibular first molars occurred in 29% of cases and C-shaped roots in mandibular second molars 29% of cases. There were seven variants in the root canal morphology of mandibular first molars and eight variants in mandibular second molars. CBCT is a potentially effective tool in the detection of distolinguinal roots and C-shaped roots/canals for radiographic evaluation during root canal treatment.

Acknowledgements

This work was supported by the Key Clinical Program of the Ministry of Health of China. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript. We thank Li Liu, Guo Li and Yuanyuan Liu for their help with the acquisition of the raw data.

References

