The Rapid-Flow Filling Technique has become an obturation method utilized by practitioners who avail themselves of the technical advancements in endodontics. Practitioners in general practice residencies and endodontic residency programs as well as endodontists have mastered the technique with minimal direction.

**HISTORY**

The quest in endodontics is to fill prepared root canal systems in 3 dimensions. Various materials and techniques have been tried, with the profession continuously returning to gutta-percha. Gutta-percha meets all but 2 of Grossman’s requirements for an ideal root filling material:

1. that it be a semisolid upon insertion, and second, that it becomes solid afterw ard.
2. Solvent techniques have been able to provide the semisolid property, but evaporation of the solvent has left voids in the gutta-percha fillings. Schilder’s vertical condensation of warm gutta-percha, and the more recent System B (SybronEndo) variation of his technique, required filling a cone in the canal, then plasticizing the gutta-percha with heat and condensing it, with repetitions if necessary, until the material reached the apex. However, the gutta-percha is not introduced in a plasticized state.

The Rapid-Flow Filling Technique consistently meets the last 2 of Grossman’s requirements, ie, the gutta-percha is semisolid upon insertion and becomes solid afterward. This has been made possible by Ni-Ti canal preparations, the Obtura (Obtura Spartan), and temperature-controlled gutta-percha, such as Schwed regular flow gutta-percha (Charles B. Schwed) or Obtura 150 gutta-percha (Obtura Spartan).

Gutta-percha in a perfect plastic state is injected into the ideally Ni-Ti prepared root canal space and vertically condensed until the gutta-percha has solidified. Scanning electron microscope examination demonstrates the adaptation of heat-plasticized gutta-percha to be equal or superior to fillings produced by other clinically accepted techniques.

**MATERIALS**

ProFile series 29 0.06 Ni-Ti instruments (DENTSPLY Tulsa) used in a light touch, crown-down method provide an excellently shaped canal with a constriction at the apex and a flare at the orifice. ProTaper series 29 0.06 files (DENTSPLY Tulsa) used circumferentially in a crown-down technique also provide the needed shape. The ProTapers cut with a light, circumferential motion more efficiently coronally than the ProFile, allowing deeper penetration of the smaller sizes approaching the apex.

RC-Prep (Premier Dental Products) is used in the pulp chamber as a lubricant with Ni-Ti files, and as a mild chelating agent to help remove the smear layer. The new Obtura (Figure 1) has precise temperature settings required for gutta-percha flow through the 20-gauge and 23-gauge needles. Gutta-percha formulations with the required flow properties at exact temperatures are necessary for successful use of the Rapid-Flow Filling Technique. Although other gutta-percha formulations will work for backfilling, they lack the flow characteristics for complete fills. With the correct formulation, gutta-percha can be drawn out to a long, hair-like strand at least 1 foot long (Figure 2). Schwed regular flow will work at 160°C for the 20-gauge and 200°C for the 23-gauge Obtura needles (Obtura Spartan). Obtura 150 gutta-percha will fulfill this task at 160°C for complete fills.
Here’s what the “critics” are saying about the NEW redesigned Obtura.

“In my 25 years of using injectable gutta-percha, the redesigned Obtura sets a new paradigm for quality, ease of use, and ergonomics.”
- Jay Marlin, DMD, Assoc. Clinical Professor of Endodontics, Tufts School of Dental Medicine, Boston, MA

“Once again Obtura has shown innovation in updating their classic obturation unit. The new and improved unit features better ergonomics and many user friendly features. I predict it will become an indispensable adjunct for those practitioners seeking to achieve endodontic excellence.”
- Hugh Maguire, DDS, Founder, Endodontic Learning Centre, White Rock, BC

“The Obtura is my favorite device for the delivery of either gutta-percha or Resilon, because it gives me excellent control of the filling procedure. The “feel” is incomparable!”
- Marga Ree, DDS, MSc, Netherlands

“Even the most difficult canal shape is easier to fill with the new Obtura.”
- Jerzy Zbozen, DDS, Kielce, Poland

“Obtura III’s new aesthetically pleasing design is less cumbersome than previous units. This ergonomic style provides excellent tactile sensitivity, so necessary for a controlled fill. The presets make using different obturation materials efficient and accurate. Personally I highly recommend the new Obtura, and will continue to use Obtura Spartan technology in my practice.”
- Bobby Mallik, DMD, Green Brook, NJ

“The Obtura is a must have piece of equipment for a predictable and efficient backfill in doing root canal treatment.”
- Kenneth Lee, DMD, Endodontist, Exton, PA

Order Direct
USA 800 344-1321 • (636) 343-8733 • Fax (636) 343-5794
CANADA 877 485-3556 • (905) 633-9656 • Fax (905) 633-9657
www.obtura.com
Rapid-Flow...
continued from page 98
both size needles.
Roth 811 Elite Grade Root Canal Cement (Roth International), mixed thin rather than stringy, is the preferred sealer for this technique. In addition to its sealing properties, it must act as a lubricant to aid the flow of the plasticized gutta-percha into the canal preparation.

Schlierd pluggers (DENTSPLY Maillefer) Nos. 8 and 9, and Nos. 20 and 25 stainless finger pluggers (Moyco Union Broach), not spreaders, are required for condensation. Alcohol prevents the condensers from adhering to the walls of the canal. Access is accomplished, originating at the working length, by sodium hypochlorite (NaOCl), followed by acetic acid (EDTA) for removing the smear layer and to expose the apical access of accessory canals. The canal is dried, and plugger is fitted to the extent that it is 1 mm short of touching the walls of the canal to prevent dentin cracking during gutta-percha compaction.

One drop of loose sealer is placed 1 mm short of the apical preparation. Using a needle that fits in the middle third of the canal, the Obtura is heated to the correct gutta-percha temperature so that it can be stretched to a fine, hair-like strand (Figure 2). Excess gutta-percha is removed from the needle tip, and it is placed in its rest position. Injection is stopped, and the needle is then removed. The gutta-percha flows half the distance between the tip of the needle and the prepared apical constriction, leaving 2 to 4 mm of distance for the condenser to complete the flow as gutta-percha solidifies (Figures 4c and 4d).

The No. 8 Schlierd plugger is dipped in alcohol and introduced into the canal with firm vertical pressure short of the pre-fit reference point until the filling material feels solid. Rotate the condenser on its axis and remove. With the No. 25 finger plugger dipped in alcohol, the same motion is used until the gutta-percha is solid, then rotated on its axis and removed. The same motion is repeated with the No. 20 finger plugger. At this time the No. 25 is reintroduced, pushing gutta-percha circumferentially from the walls into the center of the canal. The Schlierd plugger is likewise used and a radiograph is taken. With the apex and accessory canals filled, the remainder of the canal is back-filled with the Obtura and condensed (Figures 5a to 5d).

**DISCUSSION**
The Rapid-Flow Filling Technique is a 3-dimensional filling process that results in a solid impression of the root canal system and all its irregularities. Cones are not required, since the gutta-percha is plasticized outside the tooth, introduced into the canal preparation, which serves as a mold, and held under pressure during solidification. The technique is similar to the manufacturing of plastic products we use every day. Due to the unique heat-retentive flow characteristics of gutta-percha, adequate time is available to fill the properly prepared root canal completely and compact the material as it solidifies. Forging the gutta-percha into the canal intricacies is a normal advantage of this obturation method. Often, the complete filling procedure is completed in less time than is required to fit a cone.

With experience, the dentist will adapt the Rapid-Flow Filling Technique to a great variety of cases (Figures 6a to 8b).

**CONCLUSION**
The Rapid-Flow Filling Technique has become an obturation method utilized by practitioners who avail them-
selves of the technical advancements in endodontics. Practitioners in general practice residencies and endodontic residency programs as well as endodontists have mastered the technique with minimal direction. Consistently accurate apex locators show apical constrictions that terminate at or just short of the apical foramen. Ni-Ti instrumentation provides ideal shapes with apical constrictions. Gutta-percha with controlled temperature ranges and the new Obtura allow introduction of filling material at the correct temperature and consistency. With the Rapid-Flow Filling Technique, condensation and obturation are the same as other established warm gutta-percha techniques\(^4\) in significantly shorter chair time.\(^\star\)

References

---

**Dr. Marlin** is associate clinical professor of endodontics, Tufts School of Dental Medicine. He can be reached at jmguttagun@gmail.com.

**Disclosure:** Dr. Marlin has a royalty involvement with Obtura for their needles.