Tissue Dissolution by Sodium Hypochlorite: Effect of Concentration, Temperature, Agitation, and Surfactant

Sonja Stojicic, DDS, MSc, † Slavoljub Zivkovic, DDS, PhD, † Wei Qian, DDS, PhD, * Hui Zhang, DDS, PhD, * and Markus Haapasalo, DDS, PhD *

Abstract

Aim: Sodium hypochlorite is the most commonly used endodontic irrigant because of its antimicrobial and tissue-dissolving activity. The aim of this study was to evaluate and compare the effects of concentration, temperature, and agitation on the tissue-dissolving ability of sodium hypochlorite. In addition, a hypochlorite product with added surface active agent was compared with conventional hypochlorite solutions. Methods: Three sodium hypochlorite solutions from two different manufacturers in concentrations of 1%, 2%, 4%, and 5.8% were tested at room temperature, 37°C, and 45°C with and without agitation by ultrasonic and sonic energy and pipetting. Distilled and sterilized tap water was used as controls. Pieces of bovine muscle tissue (68 ± 3 mg) were placed in 10 mL of each solution for five minutes. In selected samples, agitation was performed for one, two, or four 15-second periods per each minute. The tissue specimens were weighed before and after treatment, and the percentage of weight loss was calculated. The contact angle on dentin of the three solutions at concentrations of 1% and 5.8% was measured. Results: Weight loss (dissolution) of the tissue increased almost linearly with the concentration of sodium hypochlorite. Higher temperatures and agitation considerably enhanced the efficacy of sodium hypochlorite. The effect of agitation on tissue dissolution was greater than that of temperature; continuous agitation resulted in the fastest tissue dissolution. Hypochlorite with added surface active agent had the lowest contact angle on dentin and was most effective in tissue dissolution in all experimental situations. Conclusions: Optimizing the concentration, temperature, flow, and surface tension can improve the tissue-dissolving effectiveness of hypochlorite even 50-fold. (J Endod 2010; 36:1–5)

Key Words

Agitation, Chlor-Xtra, sodium hypochlorite, surfactant, temperature, tissue dissolution

Success in endodontic treatment depends to a great extent on chemomechanical debridement of the canals. Although instruments remove most of the canal contents in the main root canal area, irrigation plays an indispensable role in all areas of the root canal system, in particular those parts that are inaccessible for instrumentation (1). The most favorable features of irrigants are their flushing action, tissue-dissolving ability, antimicrobial effect, and low toxicity (2, 3). Sodium hypochlorite is the most commonly used endodontic irrigant because of its well-known antimicrobial and tissue-dissolving activity (4–6).

The dissolving capability of sodium hypochlorite relies on its concentration, volume, and contact time of the solution but also on the surface area of the exposed tissue (7). However, high concentrations are potentially toxic for periapical tissue (8–10). Also, changes in mechanical properties such as decreased microhardness and increased roughness of radicular dentin have been reported after exposure to sodium hypochlorite in concentrations of 2.5% and 5.25% (11).

Possible ways to improve the efficacy of hypochlorite preparations in tissue dissolution are increasing the pH (12) and the temperature of the solutions, ultrasonic activation, and prolonged working time (13). Although there is a general consensus that increased temperature enhances the effectiveness of hypochlorite solutions, there are only a few published articles about this (14–16). It has been suggested that preheating low-concentration solutions improves their tissue-dissolving capacity with no effect on their short-term stability. Also, systemic toxicity is lower compared with the higher-concentration solutions (at a lower temperature) with the same efficacy (15). The impact of mechanical agitation of the hypochlorite solutions on tissue dissolution was found to be very important by Moorer and Wesselink (7) who emphasized the great impact of violent fluid flow and shearing forces caused by ultrasound on the ability of hypochlorite to dissolve tissue. However, the mechanisms involved are not completely understood (13). Despite several separate reports of the various ways to improve the effectiveness of tissue dissolution by sodium hypochlorite, the relative importance of temperature, concentration, and agitation remains unclear. In the present study, all these factors were examined under controlled conditions to allow comparison of their role. Finally, a hypochlorite product with an added surface active agent was compared with conventional products in the different experimental settings.

Materials and Methods

Solutions

Sodium hypochlorite solutions in concentrations of 1%, 2%, 4%, and 5.8% were tested. Stock solution of 6% sodium hypochlorite (Regular 1; EMD Chemicals Inc, Gibbstown, NJ) and 5.8% sodium hypochlorite (Regular 2; Inter-Med, Inc/Vista Dental Products, Racine, WI) were obtained from the manufacturers. Two different hypochlorite products with 5.8% sodium hypochlorite were included in the experiments: one conventional solution (Regular 2, Vista-Dental) and one with a surface active agent added (Chlor-Xtra, Vista-Dental). The amount of available chlorine was obtained by the manufacturers. The solutions were kept at 4°C following the recommendations of the manufacturer and brought to room temperature (RT) before use. One percent,
2, 4%, and 5.8% solutions of sodium hypochlorite were prepared by diluting the stock solution in distilled water. Distilled and sterilized tap water was used as controls.

Dissolution of Tissue

Bovine meat was used as a tissue sample in the experiment. It was kept frozen at −15°C in 100% humidity. Frozen tissue was cut into pieces of 4 × 4 × 2 mm using stainless steel blade. Because the surface area has a great impact on the tissue dissolution, each sample had a similar size and shape. The samples had an original weight of 68 ± 3 mg with no significant difference between groups.

The experiments were done at RT and at 37°C and 45°C. A water bath (Water Bath Digital 10L; Fisher Scientific, Ottawa, Ontario, Canada) was used for the experiments at 37°C and 45°C. The temperature of the solutions was confirmed using a thermometer (Fisher Scientific).

Three different means of agitation were tested: ultrasonic, sonic, and pipetting. An ultrasonic system (Varios Lux 350; NSK, Japan) with a slender steel tip (E 7) at power setting 4 was used to deliver ultrasonic energy. Sonic vibration at 10,000 cpm was applied by EndoActivator (Dentsply, Tulsa, OK) using a flexible polymer tip size 25/04 (medium). The tips (ultrasonic and sonic) were immersed in the hypochlorite solutions into a depth of 10 mm, 5 mm away from the tissue specimen, without touching them. A transfer pipette (grad, 5.8 mL; Fisher Scientific) was used for mechanical agitation of the hypochlorite specimens, without touching them. A transfer pipette (grad, 5.8 mL; Fisher Scientific) was used to prepare the dentin surfaces for contact angle measurement.

Dissolution of Tissue

The specimens were weighed on an electronic balance (FX-300; A&D Company, Ltd, Tokyo, Japan) before the hypochlorite treatments and placed each in 10 mL of preheated hypochlorite solution in separate beakers in the temperature-controlled water bath. Five parallel samples per group were included in all experiments. After 5 minutes in the solution, the samples were blotted dry and weighed again. The percentage of weight loss was calculated.

Contact Angle Measurement

Extracted human maxillary canine and mandibular premolars were used to prepare the dentin surfaces for contact angle measurements. After cutting off the crown and apical third of the root, each tooth was split in half labiopalatally using a low-speed diamond saw. Each cut surface was polished using a series of abrasive papers (CarbiMet; Buehler, Lake Bluff, IL) in the following sequence (120/P120, 180/P180, 240/P240, 320/P400, 600/P800, and 600/P1200). A 1.5-µL droplet of 1% and 5.8% hypochlorite solutions or distilled water (control) was placed on coronal root dentin using a 2-µL pipette. The contact angle was measured within 30 seconds using a NRL Contact Angle Goniometer (Ramé-hart, Netcong, NJ). Six parallel measurements were performed with each solution on dentin surfaces of both teeth.

Data Analysis

Weight loss was expressed as mean value ± standard deviation of the percentage of the tissue weight loss. Data were analyzed using one-way analysis of variance followed by the Tukey post hoc test for multiple comparisons (SPSS Inc, Chicago, IL). Statistical significance was considered at p < 0.05.

Results

Tissue weight loss after 5 minutes in different concentrations of sodium hypochlorite at three different temperatures is shown in Table 1. Weight loss increased with increasing concentrations of sodium hypochlorite. A significant difference in weight loss was observed after exposure to 2% Chlor-Xtra and 4% and 5.8% (p < 0.05) (Table 1).

Table 1. Tissue Weight Loss (% ± Standard Deviation) After 5 Minutes of Exposure to Three Sodium Hypochlorite Products at Different Concentrations and Temperatures

<table>
<thead>
<tr>
<th>% of weight loss</th>
<th>RT</th>
<th>37°C</th>
<th>45°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distilled water (control)</td>
<td>-0.87 ± 1.59</td>
<td>1.40 ± 2.33</td>
<td>10.91 ± 1.71</td>
</tr>
<tr>
<td>Sterilized water (control)</td>
<td>-2.26 ± 1.35</td>
<td>2.36 ± 1.14</td>
<td>8.26 ± 1.86</td>
</tr>
<tr>
<td>1% Regular 1</td>
<td>-3.21 ± 1.85</td>
<td>-0.27 ± 2.23</td>
<td>1.16 ± 1.92</td>
</tr>
<tr>
<td>Regular 2</td>
<td>-5.52 ± 1.38</td>
<td>-0.29 ± 1.26</td>
<td>1.72 ± 1.87</td>
</tr>
<tr>
<td>Chlor-Xtra</td>
<td>-6.51 ± 3.05</td>
<td>1.19 ± 2.14</td>
<td>4.74 ± 2.12</td>
</tr>
<tr>
<td>2% Regular 1</td>
<td>4.41 ± 1.79</td>
<td>10.72 ± 2.30</td>
<td>14.61 ± 5.27</td>
</tr>
<tr>
<td>Regular 2</td>
<td>3.95 ± 2.04</td>
<td>8.25 ± 2.30</td>
<td>14.18 ± 3.45</td>
</tr>
<tr>
<td>Chlor-Xtra</td>
<td>7.75 ± 2.08*</td>
<td>13.07 ± 0.80*</td>
<td>21.10 ± 2.16*</td>
</tr>
<tr>
<td>4% Regular 1</td>
<td>20.52 ± 3.00*</td>
<td>26.63 ± 3.13</td>
<td>36.26 ± 2.95*</td>
</tr>
<tr>
<td>Regular 2</td>
<td>18.13 ± 2.22*</td>
<td>24.93 ± 1.32</td>
<td>33.61 ± 3.58*</td>
</tr>
<tr>
<td>Chlor-Xtra</td>
<td>28.19 ± 3.27*</td>
<td>37.90 ± 5.77*</td>
<td>49.17 ± 5.20*</td>
</tr>
<tr>
<td>5.8% Regular 1</td>
<td>29.93 ± 2.24*</td>
<td>40.68 ± 2.64*</td>
<td>49.10 ± 6.52*</td>
</tr>
<tr>
<td>Regular 2</td>
<td>27.28 ± 4.47*</td>
<td>38.31 ± 3.29*</td>
<td>48.18 ± 4.45*</td>
</tr>
<tr>
<td>Chlor-Xtra</td>
<td>41.55 ± 5.22*</td>
<td>59.05 ± 6.20*</td>
<td>67.28 ± 8.80*</td>
</tr>
</tbody>
</table>

RT, room temperature; regular 1, sodium hypochlorite (EMD Chemicals Inc); regular 2, sodium hypochlorite (Inter-Med, Inc./Vista Dental Products); Chlor-Xtra, sodium hypochlorite with added surface active agent (Inter-Med, Inc./Vista Dental Products). *p < 0.05, †p < 0.001 versus distilled water. ‡p < 0.05. §p < 0.01. ††p < 0.001 versus regular 1.
Results from the present study showed that 5.8% sodium hypochlorite solution decreases if it is diluted (2, 5, 16). Other methods have used different approaches (eg, measuring the tissue-dissolution ability of different irrigants. The reasons for using different tissue instead of dental pulp have been availability and easier standardization of the surface area of each specimen (2). Tissue specimens used in the present study were prepared from bovine muscle tissue-dissolving ability (6). Porcine muscle tissue (1, 12), rabbit liver (7), rat connective tissue (5), pig palatal mucosa (18), bovine muscle tissue (2), and bovine pulp (3) have been used to determine dissolution ability of different irrigants. The reasons for using different tissue instead of dental pulp have been availability and easier standardization of the surface area of each specimen (2). Tissue specimens used in the present study were prepared from bovine muscle tissue with a standardized weight of 68 ± 3 mg. The meat specimens were cubical in shape (4 × 4 × 2 mm) giving an equal surface area. Pilot experiments had shown that it was difficult to determine the endpoint of complete dissolution of the tissue because of a greater number of bubbles (result of saponification reaction); therefore, fixed time was used instead, and the samples were weighed before and after exposure. Other methods have used different approaches (eg, measuring the changes in the solutions, such as the amount of available chlorine in the solution after completed dissolution [7] or the amount of hydroxyproline in the residual tissue after incubation with the solution [19]).

Previous studies have shown that the tissue-dissolving ability of sodium hypochlorite solution decreases if it is diluted (2, 5, 16). Results from the present study showed that 5.8% sodium hypochlorite or 5.8% Chlor-Xtra had the lowest contact angle of the three hypochlorite solutions. There was no significant difference in contact angle between the 1% solutions (p > 0.05) (Table 4).

Discussion

A great number of studies have focused on the tissue-dissolving ability of sodium hypochlorite. It has been found that the solvent capability of sodium hypochlorite depends on its concentration; temperature; pH; temperature; agitation; and the type, amount, and surface area of the tissue (2, 5, 17, 12). However, great variations among these factors contribute to the difficulty of making comparisons between different studies and the relative importance of each factor (17).

The present study evaluated the effect of concentration, temperature, and agitation on sodium hypochlorite ability to dissolve organic material in a standardized setting. Tissues from a number of different sources have been used in studies about sodium hypochlorite tissue-dissolving ability (6). Porcine muscle tissue (1, 12), rabbit liver (7), rat connective tissue (5), pig palatal mucosa (18), bovine muscle tissue (2), and bovine pulp (3) have been used to determine dissolution ability of different irrigants. The reasons for using different tissue instead of dental pulp have been availability and easier standardization of the surface area of each specimen (2). Tissue specimens used in the present study were prepared from bovine muscle tissue with a standardized weight of 68 ± 3 mg. The meat specimens were cubical in shape (4 × 4 × 2 mm) giving an equal surface area. Pilot experiments had shown that it was difficult to determine the endpoint of complete dissolution of the tissue because of a greater number of bubbles (result of saponification reaction); therefore, fixed time was used instead, and the samples were weighed before and after exposure. Other methods have used different approaches (eg, measuring the changes in the solutions, such as the amount of available chlorine in the solution after completed dissolution [7] or the amount of hydroxyproline in the residual tissue after incubation with the solution [19]).

Previous studies have shown that the tissue-dissolving ability of sodium hypochlorite solution decreases if it is diluted (2, 5, 16). Results from the present study showed that 5.8% sodium hypochlorite or 5.8% Chlor-Xtra had the lowest contact angle of the three hypochlorite solutions. There was no significant difference in contact angle between the 1% solutions (p > 0.05) (Table 4).
Basic Research—Technology

TABLE 4. Effect of Agitation by Pipetting for 0%, 25%, 50%, and 100% of the 5-Minute Exposure Time on Tissue Dissolution (% *p < 0.05.

<table>
<thead>
<tr>
<th>Solutions</th>
<th>Agitation/no. of agitation per each minute</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No agitation</td>
</tr>
<tr>
<td>2% sodium hypochlorite</td>
<td>2.71 ± 1.68</td>
</tr>
<tr>
<td>5.8% sodium hypochlorite</td>
<td>29.94 ± 2.31</td>
</tr>
</tbody>
</table>

\(\dagger\)p < 0.05.
\(\dagger\)p < 0.001 versus no agitation.

TABLE 4. Contact Angle (Mean ± Standard Deviation) on Dentin of Three Sodium Hypochlorite Solutions (1% and 5.8%)

<table>
<thead>
<tr>
<th>Distilled water</th>
<th>Reg 1</th>
<th>Reg 2</th>
<th>Chlor-Xtra</th>
<th>Reg 1</th>
<th>Reg 2</th>
<th>Chlor-Xtra</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>39.33 ± 12.35</td>
<td>52.17 ± 13.58</td>
<td>44.83 ± 12.33</td>
<td>41.42 ± 9.59</td>
<td>71.92 ± 12.76(\dagger)</td>
<td>54.58 ± 13.91(\dagger)</td>
</tr>
</tbody>
</table>

\(\dagger\)p < 0.05.
\(\dagger\)p < 0.001 versus distilled water.
\(\dagger\)p < 0.01.
\(\dagger\)p < 0.001 versus 5.8% Reg 1.
mechanism creates stirring action and rapid movements of the liquid further away from the energy source. This is likely to be the mechanism by which ultrasonic affects cleaning of the peripheral parts in root canal in vivo. Within the limitations of the present study, all three methods of agitation improved tissue dissolution. In clinical endodontics penetration of irrigants to the most apical canal and to other peripheral areas such as fins and webs remains a great challenge, and both ultrasonic and sonic agitation may in that environment have advantages which could not be demonstrated in the present study design.

In conclusion, an increase in concentration and temperature of sodium hypochlorite greatly increased its efficacy in tissue dissolution. Refreshing the hypochlorite solution at the site of dissolution by agitation, preferably continuous, also resulted in a marked increase of hypochlorite effect. High temperature and agitation had an additive effect on the tissue dissolution. The sodium hypochlorite product with added surface active agent was the most effective in tissue dissolution at all concentrations and temperatures.

References

31.Paused
32.Paused
33.Paused
34.Paused
35.Paused
36.Paused
37.Paused
38.Paused
39.Paused
40.Paused
41.Paused
42.Paused
43.Paused
44.Paused
45.Paused
46.Paused
47.Paused
48.Paused
49.Paused
50.Paused
51.Paused
52.Paused
53.Paused
54.Paused
55.Paused
56.Paused
57.Paused
58.Paused
59.Paused
60.Paused
61.Paused
62.Paused
63.Paused
64.Paused
65.Paused
66.Paused
67.Paused
68.Paused
69.Paused
70.Paused
71.Paused
72.Paused
73.Paused
74.Paused
75.Paused
76.Paused
77.Paused
78.Paused
79.Paused
80.Paused
81.Paused
82.Paused
83.Paused
84.Paused
85.Paused
86.Paused
87.Paused
88.Paused
89.Paused
90.Paused
91.Paused
92.Paused
93.Paused
94.Paused
95.Paused
96.Paused
97.Paused
98.Paused
99.Paused
100.Paused
101.Paused
102.Paused

Edited by Foxit PDF Editor
Copyright (c) by Foxit Software Company, 2003 - 2009
For Evaluation Only.

PROOF