Mineral trioxide aggregate pulpotomies
A case series outcomes assessment

David E. Witherspoon, BDSc, MS; Joel C. Small, DDS; Gary Z. Harris, DDS

Background. The greatest threats to developing teeth are dental caries and traumatic injury. A primary goal of all restorative treatment is to maintain pulp vitality so that normal root development or apexogenesis can occur. If pulpal exposure occurs, then a pulpotomy procedure aims to preserve pulp vitality to allow for normal root development. Historically, calcium hydroxide has been the material of choice for pulpotomy procedures. Recently, an alternative material called mineral trioxide aggregate (MTA) has demonstrated the ability to induce hard-tissue formation in pulpal tissue. The authors describe the clinical and radiographic outcome of a series of cases involving the use of MTA in pulpotomy procedures.

Methods. Twenty-three cases in 18 patients were treated with MTA pulpotomy procedures in an endodontic private practice. All of the patients had been referred to the practice for diagnosis and treatment of a symptomatic tooth. All of the authors provided treatment. Pulpal exposures were either due to caries or complicated enamel dentin fractures.

Results. Nineteen teeth in 14 patients were available for recall. The mean time of recall was 19.7 months. Of the 19 cases, 15 involved healed teeth, and three involved teeth that were healing. One of 19 cases involved a tooth with persistent disease.

Conclusions. MTA may be useful as a substitute for calcium hydroxide in pulpotomy procedures. Further research, however, is required to clarify this conclusion.

Clinical Implications. MTA conceivably could replace calcium hydroxide as the material of choice for pulpotomy procedures, if future research continues to show promising results.

Key Words. Pulpotomy; mineral trioxide aggregate; apexogenesis.

JADA 2006;137:610-8.
several elements when choosing a material to be used in vital pulp treatment. These elements include the ability of the material to kill bacteria, induce mineralization and establish a bacteria-tight seal.

Calcium hydroxide. Calcium hydroxide is a white, crystalline, slightly soluble basic salt that dissociates into calcium ions and hydroxyl ions in solution and exhibits a high alkalinity (pH 11). It is used in both setting and nonsetting forms in dentistry. Codman was the first to use calcium hydroxide in pulpal treatment. Dentists also use calcium hydroxide because of its antimicrobial properties and its ability to induce hard-tissue formation.

Mineralization. Researchers have shown that calcium hydroxide forms a dentin bridge when placed in contact with pulpal tissues. Calcium hydroxide must be in contact with the tissue for mineralization to occur. Initially, a necrotic zone is formed adjacent to the material, and, depending on the pH of the calcium hydroxide material, a dentin bridge is formed directly against the necrotic zone or the necrotic zone is resorbed and replaced by a dentin bridge. The barrier is not always complete. The calcium ions in the calcium hydroxide do not become incorporated in the hard tissue that forms. Calcium hydroxide is an initiator rather than a substrate for repair.

Several theories exist as to how calcium hydroxide induces hard-tissue formation. These include the high alkalinity (a pH of 11), which produces a favorable environment for the activation of alkaline phosphatase, an enzyme involved in mineralization. The calcium ions reduce the permeability of new capillaries formed in repairing tissue, decreasing the amount of intercellular fluid and increasing the concentration of calcium ions derived from the blood supply at the mineralization front. This may have two effects on the mineralization process; it may provide a source of calcium ions for mineralization, and it may stimulate the activity of calcium-dependent pyrophosphatase, which reduces the level of mineralization inhibitory pyrophosphate ions within the tissues.

Antimicrobial effect. The antimicrobial effect of pulpotomy materials relates to the ability of the material to kill existing bacteria and prevent the future leakage of bacteria from the oral environment into the pulp. The antimicrobial properties of calcium hydroxide are derived from several factors. The high pH produces an environment that is not conducive to bacteria growth. There are three mechanisms by which calcium hydroxide induces bacterial lysis:

- the hydroxyl ions destroy phospholipids so the cellular membrane is destroyed;
- the high alkalinity breaks down ionic bonds so that bacterial proteins are denatured;
- the hydroxyl ions react with bacterial DNA, inhibiting replication.

Calcium hydroxide treatment also has been shown to decrease the effect of bacterial-associated lipopolysaccharide (LPS). It can hydrolyze the lipid moiety of bacterial LPS and is able to eliminate the ability of LPS to stimulate tumor-necrosis factor-alpha production in peripheral blood monocytes. These actions decrease the ability of bacteria to cause tissue destruction.

The ability to prevent penetration of bacteria into the pulp affects pulp survival significantly. Initially, the two paste calcium hydroxide systems were believed to have the ability to resist bacterial penetration; however, their ability to continue to do so has been called into question. The adhesive bond of calcium hydroxide liners to dentin is weak, and adhesive resin materials do not bond to the surface of the material. The incidence of bacterial leakage when calcium hydroxide is used in pulpal procedures has been reported as 47.0 percent. This was significantly greater than the leakage associated with bonded resin restorations. The severity of pulpal inflammation was shown to increase with the presence of bacteria.

Outcomes. Several studies have assessed the outcomes of calcium hydroxide in vital pulpal treatment. Generally, as the length of the follow-up period increased, the success rate decreased. At the five- and 10-year follow-ups, pulp capping of cariously exposed teeth resulted in a failure rate of 44.5 percent and 79.7 percent, respectively. In teeth with carious exposures treated with calcium hydroxide pulpotomies, healing teeth ranged from approximately 50 to 92 percent.

A study examining 41 teeth with carious pulpal exposures (with or without periradicular changes seen on radiographic examination) treated with pulpotomy and calcium hydroxide reported a healing rate of 87 to 79 percent. The healing rate in teeth with pre-existing pain, however, was approximately 50 percent. The follow-up period varied from six to eight months. In a similar
study, investigators found that 26 permanent vital molars with asymptomatic carious pulp exposures and periradicular involvement were treated with calcium hydroxide pulpotomies. The patients ranged in age from 10 to 24 years, and 24 teeth (92 percent) achieved healing status. The observation period after pulpotomy treatment was 16 to 72 months; however, investigators followed only 12 teeth beyond 24 months. The mean follow-up period was not reported in the study. In another study, 37 posterior teeth with deep carious lesions that were exposed during caries removal were treated with calcium hydroxide pulpotomies. The patients ranged in age from 6 to 15 years. Six teeth had widened periodontal ligament spaces periradicularly and a history of temporary pain. None of the other teeth had signs and symptoms of pulpal or periradicular inflammation or infection. The healing rate was 89 percent, and the follow-up period ranged from 24 to 140 months, with a mean of 56 months.

The healing rates in teeth with traumatic exposures that were treated with calcium hydroxide ranged from 72 to 96 percent. Fuks and colleagues reported the long-term success of partial pulpotomies in complicated crown fractures in permanent incisors that were followed for 7.5 to 11 years at 87.5 percent.

MTA. MTA is composed of tricalcium silicate, tricalcium aluminate, tricalcium oxide and silicate oxide. Hydration of the powder results in a colloidal gel composed of calcium oxide crystals in an amorphous structure: 33 percent calcium, 49 percent phosphate, 6 percent silica, 3 percent chloride and 2 percent carbon. This gel solidifies into a hard structure in less than three hours. It has a compressive strength equal to zinc oxide-eugenol with polymer reinforcement (Caulk IRM Intermediate Restorative Material, Dentsply, York, Pa.) and all-purpose lining and cement (SuperEBA, Harry J. Bosworth, Skokie, Ill.) but less than that of amalgam. It is available commercially as ProRoot MTA (Dentsply Tulsa Dental, Tulsa, Okla.) and has been advocated for use in vital pulp therapy.

Mineralization. MTA has demonstrated the ability to induce hard-tissue formation in pulpal tissues, and it promotes rapid cell growth in vitro. Compared with calcium hydroxide, MTA has demonstrated a greater ability to maintain the integrity of pulp tissue. Histologic evaluation of pulp tissue in animals and humans demonstrated that MTA produces a thicker dentinal bridge, less inflammation, less hyperemia and less pulpal necrosis compared with calcium hydroxide. MTA also appears to induce the formation of a dentin bridge at a faster rate than does calcium hydroxide. The process by which MTA acts to induce dentin bridge formation, however, is not known. Holland and colleagues theorized that the tricalcium oxide in MTA reacts with tissue fluids to form calcium hydroxide, resulting in hard-tissue formation in a manner similar to that of calcium hydroxide.

Antibacterial effect. According to Torabinejad and colleagues, MTA has an antibacterial effect on some facultative bacteria but no effect on strict anaerobic bacteria. This limited antibacterial effect is less than that demonstrated by calcium hydroxide pastes. The ability of MTA to resist the penetration of microorganisms appears to be high. In leakage studies, MTA frequently performs better than amalgam, IRM or SuperEBA. Compared with ideally placed resin-based composite, MTA leakage patterns are similar. Furthermore, the presence of blood has little impact on the degree of leakage.

Outcomes. To date, the clinical assessment of MTA has been restricted to case reports. In one, researchers performed partial pulpotomies in two cases of dens evaginatus. After six months, researchers removed the teeth as part of planned orthodontic treatment. Histologic examination of these teeth showed an apparent continuous dentin bridge formation in both teeth, and the pulps were free of inflammation.

In this article, we describe the clinical and radiographic outcome of a series of cases using MTA in pulpotomy procedures.

MATERIALS AND METHODS

We treated 23 teeth (cases 1-23) in 18 patients between 1999 and 2003 in an endodontic private practice (Tables 1 and 2, page 614). The patients had no contraindication to dental treatment. We took all of the radiographs using a digital radiographic system according to the manufacturer’s recommendations, and we conducted pulpal vitality tests to establish a pulpal diagnosis.

The treatment followed the standard pulpotomy procedure of removing the pulp to the stump level using a coarse high-speed diamond bur with copious irrigation. We used rubber dam isolation in all cases. In each case, we achieved hemostasis by irrigating pulp tissue with 2 milliliters of 6%

CLINICAL PRACTICE

11 years at 87.5 percent.

permanent incisors that were followed for 7.5 to

pulpotomies in complicated crown fractures in

Dental, Tulsa, Okla.) and has been advocated for

commercially as ProRoot MTA (Dentsply Tulsa

**less than that of amalgam. It is available com-

York, Pa.) and all-purpose lining and cement

SuperEBA.64-68 Compared with ideally placed

resin-based composite, MTA leakage patterns are

similar.69,70 Furthermore, the presence of blood

has little impact on the degree of leakage.67,71

Outcomes. To date, the clinical assessment of**

MTA has been restricted to case reports. In one,

researchers performed partial pulpotomies in two

cases of dens evaginatus.72 After six months,

researchers removed the teeth as part of planned

orthodontic treatment. Histologic examination of

these teeth showed an apparent continuous

dentin bridge formation in both teeth, and the

pulps were free of inflammation.

In this article, we describe the clinical and

radiographic outcome of a series of cases using

MTA in pulpotomy procedures.

MATERIALS AND METHODS

We treated 23 teeth (cases 1-23) in 18 patients between 1999 and 2003 in an endodontic private practice (Tables 1 and 2, page 614). The patients had no contraindication to dental treatment. We took all of the radiographs using a digital radiographic system according to the manufacturer’s recommendations, and we conducted pulpal vitality tests to establish a pulpal diagnosis.

The treatment followed the standard pulpotomy procedure of removing the pulp to the stump level using a coarse high-speed diamond bur with copious irrigation. We used rubber dam isolation in all cases. In each case, we achieved hemostasis by irrigating pulp tissue with 2 milliliters of 6%
percent sodium hypochlorite for approximately one minute. We avoided applying pressure to the pulp stumps, as it could crush the delicate tissue, the cotton from the cotton pellets used could get in the tissue and a dentin chip could be forced into the pulp tissue, all of which could have a negative effect on healing. We placed an approximately 2-millimeter-thick layer of MTA (mixed according to the manufacturer’s recommendations) over the exposed pulpal tissue. We took a final radiograph after we removed the rubber dam. Finally, we referred the patients back to their restorative dentists.

Recall intervals were approximately three months, and we followed all of the cases for as long as possible. Recall appointments included subjective history assessment, thermal pulpal testing, percussion assessment and a radiographic evaluation. We categorized cases as “healed,” “healing” or “persistent disease” (Box).

Statistical analysis.
We used the Kaplan-Meier method to assess the probability of tooth survival (that is, whether the tooth required any further treatment) and tooth healing.

TABLE 1

<table>
<thead>
<tr>
<th>CASE NO.</th>
<th>PATIENT NO.</th>
<th>PATIENT AGE (YEARS)</th>
<th>TOOTH NO.</th>
<th>OUTCOME</th>
<th>DIAGNOSIS</th>
<th>RECALL (MONTHS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>10</td>
<td>19</td>
<td>Healing</td>
<td>IP/C*</td>
<td>19</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>10</td>
<td>30</td>
<td>Healing</td>
<td>IP/C</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>14</td>
<td>31</td>
<td>Healed</td>
<td>IP/C</td>
<td>13</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>7.5</td>
<td>14</td>
<td>Patient not available for recall</td>
<td>IP/C</td>
<td>Patient not available for recall</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>16</td>
<td>8</td>
<td>Healed</td>
<td>IP/T/CEDF†</td>
<td>12</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
<td>13</td>
<td>15</td>
<td>Healed</td>
<td>IP/C</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>11</td>
<td>13</td>
<td>Healed</td>
<td>IP/C</td>
<td>29</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>12</td>
<td>18</td>
<td>Healed</td>
<td>IP/C</td>
<td>11</td>
</tr>
<tr>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>Healed</td>
<td>IP/T/CEDF</td>
<td>15</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>8</td>
<td>9</td>
<td>Healed</td>
<td>IP/T/CEDF</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>11</td>
<td>18</td>
<td>Persistent disease</td>
<td>IP/C</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>10</td>
<td>8</td>
<td>14</td>
<td>Patient not available for recall</td>
<td>IP/C</td>
<td>Patient not available for recall</td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>9</td>
<td>9</td>
<td>Healed</td>
<td>IP/T/CEDF</td>
<td>25</td>
</tr>
<tr>
<td>14</td>
<td>12</td>
<td>8</td>
<td>8</td>
<td>Patient not available for recall</td>
<td>IP/T/CEDF</td>
<td>Patient not available for recall</td>
</tr>
<tr>
<td>15</td>
<td>13</td>
<td>7</td>
<td>3</td>
<td>Healed</td>
<td>IP/C</td>
<td>33</td>
</tr>
<tr>
<td>16</td>
<td>13</td>
<td>8</td>
<td>19</td>
<td>Healed</td>
<td>IP/C</td>
<td>18</td>
</tr>
<tr>
<td>17</td>
<td>13</td>
<td>8</td>
<td>30</td>
<td>Healed</td>
<td>IP/C</td>
<td>17</td>
</tr>
<tr>
<td>18</td>
<td>14</td>
<td>15</td>
<td>31</td>
<td>Healed</td>
<td>IP/C</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>15</td>
<td>8</td>
<td>30</td>
<td>Healed</td>
<td>IP/C</td>
<td>32</td>
</tr>
<tr>
<td>20</td>
<td>16</td>
<td>9</td>
<td>8</td>
<td>Healed</td>
<td>IP/T/CEDF</td>
<td>13</td>
</tr>
<tr>
<td>21</td>
<td>16</td>
<td>9</td>
<td>9</td>
<td>Healed</td>
<td>IP/T/CEDF</td>
<td>13</td>
</tr>
<tr>
<td>22</td>
<td>17</td>
<td>9.5</td>
<td>14</td>
<td>Patient not available for recall</td>
<td>IP/C</td>
<td>Patient not available for recall</td>
</tr>
<tr>
<td>23</td>
<td>18</td>
<td>8.5</td>
<td>30</td>
<td>Healing</td>
<td>IP/C</td>
<td>53</td>
</tr>
</tbody>
</table>

* IP/C: Irreversible pulpitis with caries exposure.
† IP/T/CEDF: Irreversible pulpitis with a complicated enamel dentin fracture due to a traumatic injury.
CLINICAL PRACTICE

Case categories.

HEALED
- No history of pain, discomfort or altered sensation
- Thermal test results for the treated tooth similar to those for contralateral control teeth
- Radiographic appearance of the tooth consistent with developmental age

HEALING
- No history of pain, discomfort or altered sensation
- No response of the treated tooth to thermal testing or electric pulp testing
- Radiographic appearance of the tooth consistent with developmental age

PERSISTENT DISEASE
- A history of pain, discomfort or altered sensation
- No response of the treated tooth to thermal testing or electric pulp testing
- Radiographic appearance of the tooth inconsistent with developmental age

RESULTS

Nineteen cases in 14 patients were available for recall (Table 1). The mean time of recall was 19.7 months (Table 2). The age range of patients was from 7 to 16 years, with a mean age of 9.9 years. Thirteen of the 19 cases (68.4 percent) available for recall had a diagnosis of irreversible pulpitis with a caries exposure (Table 1). Of these 13 cases, 70 percent healed, 23 percent were in the healing category, and 7 percent had persistent disease. Molars were the most frequently treated tooth type. Of the 19 cases, 15 involved teeth that healed (Figures 1 and 2), and three involved teeth that were healing (Figures 3 and 4). One of the 19 cases involved a tooth with persistent disease.

The probability of tooth survival at 12 months was 1.0 at a 95 percent confidence interval; the probability decreased to 0.95 at the termination point of the evaluation (Figure 5, page 616). The probability of a tooth being completely healed at 20 months was 0.55 at a 95 percent confidence interval (Figure 6, page 616).

DISCUSSION

The primary objective of vital pulp therapy in teeth with incomplete root formation is to promote normal development of the root complex. There are several long-term advantages of this treatment over apexification treatment. The tooth structure that is formed is of great quantity, and its composition appears to have greater structural integrity.\(^3\) The result is that the fully developed tooth is more resistant to vertical root fractures.\(^4\) The ideal material for vital pulp treatment should resist bacterial leakage and stimulate the remaining pulp tissue to return to a healthy state, promoting the formation of dentin.

Calcium hydroxide has been the material of choice for such treatments.\(^7,4\) The dentin formed in response to calcium hydroxide’s stimulation of pulp tissue typically ranges from a porous dentin-type material to a dentin structure that approaches that of normal dentin.\(^5,7\) The type of dentin structure formed depends on a number of variables and is not predictable.\(^3,8\) These variables

<table>
<thead>
<tr>
<th>CASE CATEGORY</th>
<th>DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (Years)</td>
<td></td>
</tr>
<tr>
<td>Range</td>
<td>7 to 16</td>
</tr>
<tr>
<td>Mean</td>
<td>9.9</td>
</tr>
<tr>
<td>Mode</td>
<td>8</td>
</tr>
<tr>
<td>Median</td>
<td>9</td>
</tr>
<tr>
<td>Recall</td>
<td></td>
</tr>
<tr>
<td>Total no. (%)</td>
<td>19 (83)</td>
</tr>
<tr>
<td>Mean (Months)</td>
<td>19.7</td>
</tr>
<tr>
<td>Mode (Months)</td>
<td>13</td>
</tr>
<tr>
<td>Median (Months)</td>
<td>17</td>
</tr>
<tr>
<td>Range (Months)</td>
<td>6 to 53</td>
</tr>
<tr>
<td>Outcome (No. of Teeth [%])</td>
<td></td>
</tr>
<tr>
<td>Healed</td>
<td>15 (79)</td>
</tr>
<tr>
<td>Healing</td>
<td>3 (16)</td>
</tr>
<tr>
<td>Persistent disease</td>
<td>1 (5)</td>
</tr>
<tr>
<td>Diagnosis (No. of Teeth)</td>
<td></td>
</tr>
<tr>
<td>Irreversible pulpitis due to caries</td>
<td>16</td>
</tr>
<tr>
<td>Irreversible pulpitis with a complicated enamel dentin fracture due to a traumatic injury</td>
<td>7</td>
</tr>
<tr>
<td>Tooth Type (No. of Teeth)</td>
<td></td>
</tr>
<tr>
<td>Maxillary molar</td>
<td>5</td>
</tr>
<tr>
<td>Mandibular molar</td>
<td>10</td>
</tr>
<tr>
<td>Maxillary premolar</td>
<td>1</td>
</tr>
<tr>
<td>Mandibular premolar</td>
<td>0</td>
</tr>
<tr>
<td>Maxillary incisor</td>
<td>7</td>
</tr>
<tr>
<td>Mandibular incisor</td>
<td>0</td>
</tr>
</tbody>
</table>

Copyright ©2005 American Dental Association. All rights reserved.
include the type of calcium hydroxide material used (powder mixed with water or a commercially available preparation), the degree of contact between the material and the pulp, and the ability to control pulpal bleeding. Calcium hydroxide also has been shown to have little resistance to bacterial leakage over the medium term in a study. In in vitro leakage studies, MTA has resisted leakage, predictably and repeatedly.

In a short-term animal assessment study, MTA consistently induced the formation of dentin at a greater rate with greater structural integrity and more complete dentin bridging than did calcium hydroxide. Histologically, in other animal studies, MTA was considerably better at stimulating reparative dentin formation and maintaining the integrity of the pulp. In a short-term human study using adult third molars, MTA consistently demonstrated less inflammation, hyperemia and necrosis, as well as a thicker dentinal bridge with more frequent odontoblastic layer formation, than that seen with calcium hydroxide.

In an outcome assessment of calcium hydroxide in vital pulp treatment, success rates ranged from 50 to 96 percent. These studies typically focused on asymptomatic teeth with deep carious lesions that resulted in a pulpal exposure or on noncarious teeth with complex enamel fractures, dentin fractures or both. Thus, the pulp had no pre-existing disease process. A 93.5 percent suc-
cess rate was achieved using a calcium hydroxide partial pulpotomy technique in young posterior teeth with deep carious lesions and exposed pulps. A significant difference in our investigation was the painful condition of a large percentage of the teeth before treatment. Approximately 70 percent of the cases on which we reported in this series involved teeth with caries exposure and a preoperative diagnosis of irreversible pulpitis. For this group, we achieved a 100 percent success rate in terms of the primary goal of normal root development in treating such a tooth. The success rate in terms of maintaining the vitality of the tooth as assessed by a response to thermal or electrical stimulus with the original coronal restoration intact in this group was 75 percent. Only one tooth (5 percent) has required additional endodontic treatment to date. This tooth had not received an appropriate coronal restoration, and recurrent caries was evident.

Figure 5. Kaplan-Meier method plot of probability of tooth survival.

Figure 6. Kaplan-Meier method plot of probability of complete healing.

CONCLUSION

MTA may be useful as a substitute for calcium hydroxide in pulpotomy procedures. Further research, however, is needed to clarify this conclusion.

The authors would like to thank Dr. Martha Nunn for her statistical analysis, Dr. John D. Regan for his critical review and the staff members of North Texas Endodontic Associates for their tireless efforts in recalling patients.