Preparation of Oval-shaped Root Canals in Mandibular Molars Using Nickel-Titanium Rotary Instruments: A Micro-computed Tomography Study

Frank Paqué, Prof. Dr. med dent,* Marc Balmer, med dent,* Thomas Attin, Prof. Dr. med dent,* and Ove A. Peters, DMD, MS, PbD†

Abstract

Introduction: This study evaluated the prepared surface areas of oval-shaped canals in distal roots of mandibular molars using four different instrumentation techniques. Methods: Teeth were prescanned and reconstructed using micro–computed tomography (MCT) scans at low resolution (68 μm). Forty-eight molars with ribbon-shaped/oval distal root canals were selected and randomly assigned to four groups. Distal canals (n = 12 each) were prepared by circumferential filing using Hedström files to apical size #40 (group H/CF); with ProTaper nickel-titanium rotaries to finishing file 4 (F4) considering the distal canal as 1 canal (group PT/1); ProTaper to F4 considering buccal and oral aspects of the distal canal as 2 individual canals (group PT/2); ProTaper to F4 in a circumferential filing motion (PT/CF). Before and after shaping, teeth were evaluated using MCT at 34-μm resolution. The percentage of prepared surface was assessed for the full canal length and the apical 4 mm. Statistical analysis was performed using analysis of variance and Bonferroni/Dunn multiple comparisons. Results: Preoperatively, canal anatomy was statistically similar among the groups (p = 0.56). Mean (± standard deviation) untreated areas ranged from 59.6% (±14.9%) in group PT/1 to 79.9% (±10.3%, PT/1) for the total canal length and 65.2% to 74.7% for the apical canal portion, respectively. Canals in group PT/1 had greater untreated surface areas (p < 0.01) than groups PT/2 and PT/CF. Among all groups, amounts of treated surface areas were statistically similar in the apical 4 mm. Conclusions: Preparations of oval-shaped root canals in mandibular molars left a variable portion of surface area untreated regardless of the instrumentation technique used. However, considering oval canals as two separate entities during preparation appeared to be beneficial in increasing overall prepared surface. (J Endod 2010;36:703–707)
two-dimensional analyses. In contrast, the technique of micro–computed tomography (MCT) scanning allows a complete description of three-dimensional effects that root canal preparation exerts on root canal anatomy without altering the root during the experiments (3). This research tool allows calculation of the root canal area that is not mechanically prepared and remains as a so-called untreated surface (15).

Untreated canal surface area may be used as a three-dimensional measure for the completeness of a root canal shape, depending on the instrument and canal type (16). Therefore, the aim of the current study was to evaluate the prepared surface areas of oval-shaped root canals in mandibular molars using different instrumentation techniques.

**Materials and Methods**

From teeth that had been extracted for reasons unrelated to the current study, a total of 200 human mandibular molars were collected. Distal roots were inspected under a stereomicroscope to verify that they had only one main portal of exit. The remaining 100 molars were pre-scanned using MCT (μCT 20; Scanco Medical, Brütisellen, Switzerland) at a resolution of 68 μm. Based on a slice-by-slice assessment taking the distal root apex as a reference point, the slice 6-mm coronal of the apex was determined and the root canal at that level outlined. The minimum diameter of the root canal was measured mesiodistally, and the maximum diameter was measured buccolingually using measurement tools included in the MCT software. Only teeth with a canal ratio of long to short diameter (Dl/Ds) of more than 2 using measurement tools included in the MCT software. Only teeth with a canal ratio of long to short diameter (Dl/Ds) of more than 2 were selected for further investigations; teeth were stored in 0.1% thymol solution at 4°C until further use.

Access to the pulp chamber was gained, and the distal root canals orifice was inspected. Irrigation was performed with 2.5% NaOCl using a 27-G needle and a 2-ml syringe. Root canals showing a single oval orifice were instrumented with K-files size #10 until the tip was just visible at the apex. After subtracting 1 mm of this length a radiograph was exposed in the buccolingual direction with a K-file (Dentsply Maillefer, Ballaigues, Switzerland) in place to verify working length and to determine canal curvature. Based on measurements according to Schneider’s method (17), teeth with a root canal curvature less than 20° were selected. Thus, a total of 48 teeth remained, fulfilling all the mentioned criteria. The root canals were stratified according to the canal ratio and then randomly assigned to the four experimental groups. Canal ratio means in the four groups ranged from 3.88 to 3.93 and were statistically similar.

Teeth were subsequently mounted on scanning electron microscopy stubs and scanned at an isotropic resolution of 34 μm using previously established methods (15, 16). Precise repositioning of pre- and postpreparation images was ensured by a combination of a custom-made mounting device and a software-controlled iterative superimposition algorithm (18, 19); resulting color-coded root canal models (green indicates preoperative and red postoperative canal surfaces) enabled metric comparison of the matched root canals before and after shaping.

All canals were prepared by a clinician (MB) who had more than 3 years experience in root canal preparation techniques including the use of Hedström files and NiTi rotaries. He also had completed an extensive training period using ProTaper Universal instruments (Dentsply Tulsa Dental, Tulsa, OK) and had been instructed in the use of Hedström files for circumferential filing.

The operator was not allowed to see reconstructed root canal models before preparation commenced so as to avoid bias by an attempt to manually direct preparation instruments into any potentially uninstrumented area. Distal canals (n = 48) were instrumented in four experimental groups (n = 12 each) as follows: in group H/CF, using Hedström files (Dentsply Maillefer) in a circumferential filing motion, the coronal part of the root canal was preflared circumferentially using Gates-Glidden-drills sizes 4, 3, and 2 into the transition of the coronal and middle root canal third. For subsequent root canal preparation, Hedström files beginning with size #10 were placed to working length and were then moved in a filing motion along the long oval root canal at least twice as suggested by Wu et al (13). This was done until reaching a master apical file size of #40. Care was taken in all experimental groups that a reservoir of irrigation solution was present in the root canal system in order to maintain cutting efficacy of hand and rotary files.

In the three remaining groups, ProTaper instruments (Dentsply Maillefer, Ballaigues, Switzerland) were used up to the finishing file F4 in a sequence according to the manufacturers’ guidelines. In group PT/1, distal root canals were prepared considering the canal as one canal with a passive insertion of the rotary without any preferred lateral direction. In group PT/2, distal root canals were prepared considering buccal and oral aspects each as two individual canals. In group PT/CF, ProTaper instruments were used in a circumferential filing motion. Similar to the Hedström files used in the H/CF group, each file was worked along the long oval root canal three times. For group PT/1, additional circumferential filing (similar to the procedure carried out in group H/CF) was performed using Hedström files sizes #30 to #40 subsequent to the first MCT evaluation. After canal shaping was completed, canals were irrigated with a final sequence of 2.5% NaOCl, 17% EDTA, and 2.5% NaOCl (5 ml each).

Before and after shaping, virtual root canal models were reconstructed based on the MCT scans. From individual canal models, overall canal volumes from apical foramen to the furcation level as well as canal volumes in the apical 4 mm were determined using previously established methods (16, 18). Similarly, using superimposed canal models, the percentage of unprepared canal surface was determined for the full canal length and the apical 4 mm.

Data were normally distributed, and, therefore, statistical analysis was performed using analysis of variance followed by Bonferroni/Dunn multiple comparisons. Where appropriate, repeated-measures analysis of variance and pair-wise t tests were used. Regression analysis was used to correlate canal dimension with the amount of untreated surface. A level of α = 0.05 was considered significant.

**Results**

Preoperatively, there were no differences regarding overall and apical canal volumes among experimental groups (p = 0.56), indicating adequate randomization. Root canal preparation of distal root canals resulted in increased volumes (p < 0.001) with no significant differences among groups. Neither a ProTaper rotary instrument nor a Hedström file fractured in any of the experimental groups.

Figure 1 shows representative examples of superimposed root canal models before and after canal preparation. In all specimens, some areas of unprepared canal walls were detected indicated by green color coding. The fraction of uninstrumented root canal surface was not correlated to the canal ratio Dl/Ds (r = 0.024, p > 0.05; Fig. 2A).

Mean untreated areas ranged from 59.6% (±14.9) in group PT/2 to 79.9% (±10.3) in group PT/1 (Fig. 2B). Analysis of variance showed that the difference in the untreated surface area among groups was significant (p < 0.01). When the apical sections were analyzed separately, the mean untreated areas ranged from 65.2% (±18.7 and 24.0, respectively) in groups PT/2 and PT/CF to 74.7% (±17.2) in group H/CF (Fig. 2C); there were no significant differences among groups in the apical 4-mm section. Additional circumferential filing with Hedström files (similar to PT/CF) in group PT/1 decreased the fraction of uninstrumented area to 69.1% ± 9.2% (p < 0.01) but left still more root canal wall untreated than in group PT/2.
The main aim of this study was to compare commonly recommended methods to prepare root canals with long-oval cross section based on MCT reconstructions. Distal root canals in mandibular molars represented an adequate model for the present experiment, with a mean diameter ratio of 1:3.91 even at the 6-mm level. The present data suggest that the preparation of nonround canals leaves some canal surface uninstrumented. This finding was not related to the preparation strategy, and its extent was only weakly correlated to preoperative canal anatomy. However, when such oval canals are prepared as if there were 2 separate buccal and lingual canals, preparation with rotary instruments was more efficient than with hand instruments.

The present study is the first to quantify in a nondestructive manner the ability of rotary instruments to prepare canal walls of root canals with a long oval cross-section. The methodology has been used extensively in studies detailing preparation outcomes with various rotary instruments in maxillary molars. In that tooth group, shaping outcomes appeared to be correlated with preoperative anatomy determined by canal volume (15, 16). However, long oval cross-sections present a unique challenge in mandibular molars.

Admittedly, the number of canals included in each group (n = 12) is comparatively low, and, hence, the standard deviation of the parameter “untreated canal surface” is relatively high. On the other hand, very stringent inclusion criteria were applied, and the study was carefully controlled; therefore, the demonstrated effect of canal preparation strategy on shaping outcomes appears to be robust.

Earlier studies (8, 12, 14) used destructive two-dimensional methods to determine the amount of prepared surface. This fact alone complicates direct comparisons to the present study, which uses nondestructive three-dimensional assessments. Moreover, the methodology used in the present study describes the three-dimensional removal of material by the change in surface voxels, requiring on average the preparation of at least 34 μm of dentin to register as “prepared surface.” Weiger et al (12) showed that when any amount of preparation was included between 44% and 68% of the canal surface was unprepared in long oval canals.

**Figure 1.** Panel with reconstructed models of distal roots of mandibular molars, representative for groups H/CF, PT/1, PT/2 and PT/CF. Green color indicates preoperative surfaces (top row), red color indicated postoperative surfaces (middle row). Superimposition (bottom row) illustrates amount and localization of uninstrumented areas. Roots are shown from the proximal aspect. Note that all techniques leave some root canal surface area uninstrumented.

---

**Discussion**

The main aim of this study was to compare commonly recommended methods to prepare root canals with long-oval cross section based on MCT reconstructions. Distal root canals in mandibular molars represented an adequate model for the present experiment, with a mean diameter ratio of 1:3.91 even at the 6-mm level. The present data suggest that the preparation of nonround canals leaves some canal surface uninstrumented. This finding was not related to the preparation strategy, and its extent was only weakly correlated to preoperative canal anatomy. However, when such oval canals are prepared as if there were 2 separate buccal and lingual canals, preparation with rotary instruments was more efficient than with hand instruments.

The present study is the first to quantify in a nondestructive manner the ability of rotary instruments to prepare canal walls of root canals with a long oval cross-section. The methodology has been used extensively in studies detailing preparation outcomes with various rotary instruments in maxillary molars. In that tooth group, shaping outcomes appeared to be correlated with preoperative anatomy determined by canal volume (15, 16). However, long oval cross-sections present a unique challenge in mandibular molars.

Admittedly, the number of canals included in each group (n = 12) is comparatively low, and, hence, the standard deviation of the parameter “untreated canal surface” is relatively high. On the other hand, very stringent inclusion criteria were applied, and the study was carefully controlled; therefore, the demonstrated effect of canal preparation strategy on shaping outcomes appears to be robust.

Earlier studies (8, 12, 14) used destructive two-dimensional methods to determine the amount of prepared surface. This fact alone complicates direct comparisons to the present study, which uses nondestructive three-dimensional assessments. Moreover, the methodology used in the present study describes the three-dimensional removal of material by the change in surface voxels, requiring on average the preparation of at least 34 μm of dentin to register as “prepared surface.” Weiger et al (12) showed that when any amount of preparation was included between 44% and 68% of the canal surface was unprepared in long oval canals.
In a recent study, the same group found less unprepared canal perimeter for canal shapes created with rotary instruments, ranging from 25% to 35%. However, when material removal of 200 \( \mu m \) was required, 80% or more of the canal surface was not counted as "prepared" (14). Compared with other studies performed on maxillary molar canals assessed with MCT (15, 16), unprepared areas in lower molar root canals in the present study were higher, indicating a particular difficulty in shaping long-oval canals. This is particularly true for the apical canal section, in which up to three quarters of the canal surface area remained unprepared in the present study.

Root canal disinfection appears to be critical for endodontic outcomes (20); eradication of microorganisms occurs as a combination of mechanical preparation (21) and irrigation (22). Irrigation alone is not always effective, and mechanical action of instruments on canal walls, including removal of infected dentin and placement of disinfecting medication such as calcium hydroxide, may be desirable (23). Both the mechanical effect of disinfection and irrigation efficacy depend on canal enlargement.

Mechanical disinfection can also be related to the removal of a layer of infected dentin, at least of incompletely mineralized predentin (24). It has been shown, however, that bacteria may penetrate dentinal tubules to depths of 200 \( \mu m \) and more (25). The present study indicated more than 50% of canal surface has undergone less than 34 \( \mu m \) of dentin removal in long-oval root canals.

Antibacterial efficacy was not determined in the present study. Mechanical preparation may affect bacterial biofilms (26) more than microorganisms in their planktonic state; it seems desirable to quantify the amount of removed biofilm using MCT. With further improvement in hard- and software, such analyses may be feasible in the near future.

In conclusion, preparations of oval-shaped root canals in mandibular molars left a high percentage of canal surface unprepared, regardless of the instrumentation technique used. However, considering such canals as two separate entities during preparation seemed to be beneficial. Regardless of the techniques used, in the present study, we noted limited mechanical preparation in the apical 4 mm, confirming the need for additional chemical disinfection.

References