Periodontal parameters and cervical root resorption during orthodontic tooth movement

Catherine Giannopoulou1, Alexander Dudic2, Xavier Montet3, Stavros Kiliaridis2 and Andrea Mombelli3
1Department of Periodontology; 2Department of Orthodontics and 3Department of Cell Physiology and Metabolism, University of Geneva, Geneva Switzerland

Abstract
Objectives: To assess the relationship between periodontal parameters and cervical root resorption in orthodontically moved teeth.

Material and Methods: In a standardized experimental tooth movement in 16 periodontally healthy subjects, 29 pre-molars were tipped buccally for 8 weeks. Eighteen contralateral pre-molars not subjected to orthodontic movement served as controls. Plaque Index (PI), Gingival Index (GI), probing depth and bleeding on probing were assessed three times before and six times during the experimental phase. Teeth were extracted and scanned in a micro-computed tomography scanner. The presence or absence, and the severity of cervical root resorption were evaluated on the three-dimensional reconstruction of the scans by two calibrated examiners.

Results: Overall, periodontal parameters were not different between the test and the control teeth. Clear signs of buccal cervical resorption were detected on 27 of 29 orthodontically moved teeth and on one control tooth. Ten subjects had perfect oral hygiene and no gingivitis, whereas six subjects showed a moderate level of plaque and gingivitis (>20% occurrences of PI or GI with >0). No relationship could be demonstrated between resorption and periodontal parameters.

Conclusions: Nearly all orthodontically moved teeth showed signs of cervical resorption. Periodontal parameters were unrelated to this important side effect of orthodontic treatment.

Key words: cervical root resorption; orthodontic movement; periodontal parameters

Accepted for publication 13 January 2008

It has been shown that orthodontic forces represent a physical agent capable of inducing an inflammatory reaction in the periodontium. This reaction is necessary for orthodontic tooth movement. The different phases of tooth movement involving the recruitment of different cells such as osteoclast and osteoblast progenitors as well as inflammatory cells have been extensively investigated (for a review, see Krishnan & Davidovich 2006). However, the effect of orthodontic movement on the gingiva has been studied to a lesser extent. Unlike bone and periodontal ligament, gingival tissue is not resorbed after orthodontic treatment but is compressed and consequently retraced. The fact that orthodontic force does not induce gingival resorption prevents the formation of periodontal pockets and the detachment of the tooth from the gingiva. However, orthodontic treatment produces a local change in the oral ecosystem, with changes in the composition of bacterial plaque and consequently the development of gingivitis (Huser et al. 1990, Alexander 1991, Paolantonio et al. 1999).

Root resorption is an undesirable side effect of orthodontic treatment. When a tooth is tipped buccally, pressure is created on the cervical part of the buccal side of the tooth and on the apical part of the palatin/lingual side. These pressure areas are the ones where root resorption is mostly expected (Hollender et al. 1980, Linge & Linge 1991, Davidovich 1996, Kurol et al. 1996). While apical root resorptions can be seen in radiographs (McFadden et al. 1989, Mirabella & Artun 1995a, b), to diagnose root resorption on the buccal and palatal surfaces of the root, the radiograph is an inadequate tool (Andreasen et al. 1987, Chapnick 1989). Therefore, the inflammatory changes underlying the
remodelling processes necessary for tooth movement have to be investigated in a wider context.

This study explores one aspect of this phenomenon by assessing the potential relationship between clinical periodontal parameters obtained during orthodontically induced tooth movement and cervical root resorption observed after treatment.

Material and Methods

Subjects

Sixteen patients (12 females and four males) were selected among patients attending the Orthodontic Department in Geneva for orthodontic treatment. The mean age of the patients was 17.7 years with a range of 11.3–43.0 years. The patients had to meet the following criteria: (i) good general health, (ii) healthy periodontium, i.e., probing depth \(\leq 3 \) mm and no radiographic evidence of bone loss, (iii) no radiographic evidence of idiopathic root resorption, (iv) no previous orthodontic treatment, (v) no history of previous dental trauma, (vi) severe crowding in both jaws and (vii) scheduled to begin orthodontic treatment comprising extractions of at least the two or four first or second premolars. Informed consent in written form was obtained from the patients (and the parents) before the beginning of the study. The protocol was approved by the Medical Ethics Committee of the University of Geneva.

Clinical examination

Before the beginning of the study, subjects received oral hygiene instructions and all tooth surfaces were cleaned and polished. Motivation for good plaque control was given to all patients. The following clinical parameters were assessed at the first (day 0) and all following visits at the buccal, mesial, distal and palatal sites of all pre-molars scheduled for extraction: Plaque Index (PI) (Sillness & Loé 1964), Gingival Index (GI) (Loé 1967), periodontal probing depth (PPD) and presence or absence of bleeding on probing (BOP).

Standardized orthodontic tooth movement

The study was divided into three phases: baseline (day 0, day 7, day 21), the early experimental period (day 28, day 35, day 49) and late experimental period (day 56, day 63, day 77). The outline of the study is shown in Fig. 1.

Each patient contributed with at least one experimental and one control premolar. During the baseline period, only periodontal examinations were performed. In the beginning of the early experimental period (day 21), 29 pre-molars randomly assigned to the experimental group were tipped buccally. For this movement, a sectional archwire (0.019 \(\times \) 0.025 TMA,Ormco, Glendora, CA, USA) was activated buccally and attached with a ligature to the bracket of the experimental tooth in order to exert a 1N force. At day 49 (beginning of the late experimental period), the amount of force was controlled and adjusted. A transpalatal and lingual arch were placed as anchorage. Eighteen contralateral pre-molars bonded with brackets but not subjected to orthodontic tooth movement served as controls. At the end of the whole experimental period (day 77), all pre-molars were carefully extracted, placed in 4% formaldehyde solution and scanned in a micro-computed tomography (CT) scanner.

Micro-CT acquisition and reconstruction

All images were acquired on a Skyscan-1076 micro-CT (Skyscan, Aartselaar, Belgium). This system is based on a cone-beam X-ray source and a charge-coupled device camera, and allows acquiring images with resolutions ranging from 35 to 9 \(\mu \)m. All scans were acquired at a 9 \(\mu \)m resolution using the following parameters: 65 kV anode voltage, 100 \(\mu \)A, 0.45° rotation step and 589 ms exposure time per view. For each mode, a 0.5 mm aluminium filter was installed in the beam path to cut off the softest X-rays in order to increase the accuracy of the beam-hardening correction (BHC). These settings allowed to scan a tooth in 90 min.

Cross-sectional images were reconstructed using a classical Feldkamp cone-beam algorithm (Feldkamp et al. 1984). The corrected image data were calibrated in the conventional linear scale of CT number, known as Hounsfield units (HU), defined so that water and air have values of 0 and \(-1000\) HU, respectively.

The three-dimensional (3D) reconstructions of the micro-CT scans were analysed by two calibrated examiners (A. D. and C. G.). The amount of root resorption on the cervical part of the buccal side was assessed semi-quantitatively on randomly sequenced movies and categorized into three groups: (i) those without any resorption, including not more than one barely visible shallow resorption up to an 80 \(\mu \)m depth, (ii) those with moderate resorption, including a few small and shallow craters of 80–120 \(\mu \)m depth and (iii) those with severe resorption, including several large and deep craters of >120 \(\mu \)m depth (Fig. 2).

Statistics

The following subject-based parameters were generated separately for the experimental teeth and control teeth for the three baseline examinations, the

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Early experimental period</th>
<th>Late experimental period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Day 0</td>
<td>Day 7</td>
<td>Day 21</td>
</tr>
<tr>
<td>Oral hygiene instructions</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Periodontal examination</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Extractions</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 1. Outline of the study.
three examinations in the early experimental period and the three examinations of the late experimental period: the percentage of sites per subject with a PI > 0, the percentage of sites per subject with a GI > 0 and the percentage of sites per subject with BOP > 0. In addition, the mean PPD (± standard deviation) was calculated for each subject in each experimental phase by summing the scores and dividing by the number of sites graded. The same parameters were assessed separately for the buccal sites.

The differences between test and control teeth were determined for each experimental period using the Fisher exact test for PI, GI and BOP and the t-test for PPD. The χ^2 test was used to study the relationship between the patient’s hygiene level and the degree of cervical root resorption. p values <0.05 were accepted for statistical significance.

The relationship between resorption and clinical parameters was further tested using logistic regression, with the presence or absence of resorption as the dependent variable and treatment or no treatment and the clinical parameters in the three experimental phases as independent variables.

The statistical analysis was performed using SPSS for Windows (Release 13.0.0, standard version, SPSS Inc., Chicago, IL, USA).

Interrater agreement

The interrater agreement on the micro-CT scans was assessed using Cohen’s κ. The frequencies for the presence or absence of root resorption on the cervical part of the buccal side of the root assessed by both observers are shown in Table 1. The bold figures along the diagonal show the observed frequencies of agreement when evaluating root resorption on the 3D micro-CT scan images; the corresponding expected frequencies are shown just below. The calculated Cohen’s κ is 0.77. There appears to be a substantial agreement between the two observers in the coding of cervical root resorption on the 3D micro-CT scans.

Results

Table 2 shows the mean values of probing depth, the percentage of buccal sites with PI and GI scores > 0 and the percentage of buccal sites that bled upon probing for the experimental and control teeth at baseline (day 0, day 7 and day 21), the early experimental period (day 28, day 35 and day 49) and during the late experimental period (day 56, day 65 and day 77). No significant differences were observed for any of the clinical parameters between experimental and control teeth throughout the study; both showed relatively good periodontal status with a mean PPD below 3 mm, a percentage of scores of PI and GI > 0 not exceeding 26.6% and 19.8%, respectively, and no more than 10% sites with a positive BOP.

During the late experimental period, an increase in the number of buccal sites with plaque and/or gingival inflammation was observed for both experimental and control teeth. However, the differences from the baseline and/or the early experimental period were not significant.

Figure 3 shows the presence or absence and the severity of cervical root resorption in the experimental and control teeth evaluated in the 3-D reconstructions of the micro-CT scans. The presence or absence and the severity of apical root resorption are reported in a companion paper. As explained under
occurrences of PI and GI). However, no
Moderate level of plaque and gingivitis (whereas six subjects showed a moderate hygiene and no signs of gingivitis, ten subjects had perfect oral hygiene. Ten subjects had perfect oral
degree of cervical root resorption is correlated to the patient’s level of oral
resorption was observed in one pre-molar of the experimental group
18 (5%) of the control teeth. Moderate resorption was categorized into
three groups: no resorption, moderate resorption and severe resorption. Clear
signs of buccal cervical resorption were detected in 27 out of 29 (93%) of the
experimental teeth and one out of
detected in 27 out of 29 (93%) of the
Table 2. Percentage of buccal sites with PI and GI > 0, BOP positive and PPD (mean ± SD) in experimental (n = 29) and control teeth (n = 18)

<table>
<thead>
<tr>
<th></th>
<th>Baseline</th>
<th>Early experimental period</th>
<th>Late experimental period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>experimental</td>
<td>control</td>
<td>experimental</td>
</tr>
<tr>
<td>PI (> 0)</td>
<td>17.7%</td>
<td>17.5% NS</td>
<td>21.5% NS</td>
</tr>
<tr>
<td>GI (> 0)</td>
<td>8.0%</td>
<td>9.1% NS</td>
<td>11.8% NS</td>
</tr>
<tr>
<td>BOP (positive)</td>
<td>3.2%</td>
<td>10.0% NS</td>
<td>3.7% NS</td>
</tr>
<tr>
<td>PPD (mm)</td>
<td>2.20 ± 0.31</td>
<td>2.05 ± 0.27 NS</td>
<td>2.35 ± 0.38 NS</td>
</tr>
</tbody>
</table>

NS, not significant (p > 0.05); PI, Plaque Index; GI, Gingival Index; BOP, bleeding on probing; PPD, pocket probing depth; SD, standard deviation.

Table 3. Relationship between degree of cervical resorption and patients’ hygiene level

<table>
<thead>
<tr>
<th>Hygiene level</th>
<th>Buccal cervical resorption on reconstructed micro-computed tomography (CT) images</th>
<th>No resorption</th>
<th>Moderate resorption</th>
<th>Severe resorption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moderate (n = 6)</td>
<td>11 (39%)</td>
<td>11 (58%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Good (n = 10)</td>
<td>17 (61%)</td>
<td>8 (42%)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

‘‘Material and Methods’’, the amount of root resorption was categorized into three groups: no resorption, moderate resorption and severe resorption. Clear
signs of buccal cervical resorption were detected in 27 out of 29 (93%) of the experimental teeth and one out of 18 (5%) of the control teeth. Moderate resorption was observed in one pre-molar of the experimental group (3.4%) and in six pre-molars (33%) of the control group.

Finally, we assessed whether the degree of cervical root resorption is correlated to the patient’s level of oral hygiene. Ten subjects had perfect oral hygiene and no signs of gingivitis, whereas six subjects showed a moderate level of plaque and gingivitis (>20% occurrences of PI and GI). However, no
relationship could be demonstrated between resorption and periodontal parameters (Table 3). Logistic regression analysis confirmed these findings as treatment or no treatment was the only significant predictor for the presence or absence of resorption; the clinical parameter had no further significant effect.

Discussion
The present study was designed to evaluate the relationship between periodontal parameters and cervical root resorption in orthodontically moved teeth. Signs of buccal cervical resorption were obvious on almost all orthodontically moved teeth, as evaluated in the reconstructed images of the micro-CT scanner. However, as no significant differences were observed for any of the periodontal parameters between experimental and control teeth, it was concluded that periodontal parameters are unrelated to cervical root resorption.

Cellular and tissue reactions start immediately after force application: the early phase of orthodontic tooth movement involves an acute inflammatory response characterized by periodontal vasodilation and migration of leucocytes out of the capillaries. Inflammation is essential to tooth movement, resulting, however, in several undesirable side effects. These effects include mainly the development of gingivitis, root resorption, gingival recession, caries, marginal bone loss and pulpal reactions.

For many years, the extent and depth of a resorbed area on the root surface of an orthodontically moved and then extracted tooth was evaluated by histology (Owman-Moll et al. 1995, Kurol & Owman-Moll 1998). However, root resorption is a 3D phenomenon and its extent needs to be quantified with precision. The micro-CT scanner is a rapid and accurate method with high resolution, providing enhanced visual and perspective assessment of root surfaces, thus offering a 3D analysis of the craters. Thus, this method may serve as a gold standard. Hence, due to the high precision we may obtain, histology would not offer any further information.

Concerning the gingival response to tooth movement, wide variations in the clinical appearance have been described, depending on the type of tooth movement (rotation, labial movement), the force, the patient’s hygiene level, etc. (for a review, see Redlich et al. 1999). Gingivitis has been described as the most common side effect of orthodontic movement due to plaque accumulation. Several studies have shown that fixed orthodontic therapy is almost always related to inflammation of gingival tissues (Zachrisson & Zachrisson 1972, Kloehn & Pfeifer 1974, Huser et al. 1990, Alexander 1991). This situation is mostly related to hampered oral hygiene and consequently to the accumulation of bacterial plaque. Furthermore, the composition of bacterial plaque following placement of orthodontic appliances changes to a more pathogenic flora (Diamanti-Kipioti et al. 1987, Paolantonio et al. 1996). An orthodontic appliance modifies locally the supragingival environment, thus affecting the colonization and occurrence of specific microorganisms. For example, Paolantonio et al. (1996)
reported a remarkable frequency of detection of Actinobacillus actinomycetemcomitans (A.a) in young individuals wearing orthodontic appliances. The presence of A.a was related to the gingival bleeding index but not to the plaque levels. Other pathogenic bacteria such as Porphyromonas gingivalis, Prevotella intermedia, Tannerella forsythia and Fusobacterium have been detected after bracket placement, resulting in more gingival inflammation and bleeding (Naranjo et al. 2006). However, these pathogens could be significantly reduced when the orthodontic appliance was removed and professional prophylaxis was given to the patient (Sallum et al. 2004).

The subjects in our study showed almost similar gingival conditions for the experimental and control teeth. This is mainly due to the oral hygiene instructions given to each patient before and during the whole experimental treatment. Several studies have shown that it is possible to achieve and maintain a high standard of gingival health during orthodontic treatment (Lundstrom & Hamp 1980a, Lundstrom et al. 1980b). The slight deterioration of the gingival status observed after 3 months in orthodontically treated children was mainly due to the sub-gingivally located orthodontic bands. In fact, banded teeth may give higher PI and bleeding scores as compared with control teeth (Huser et al. 1990), especially in patients with established gingivitis (Sallum et al. 2004).

Cervical resorption has been described as an aggressively destructive form of external root resorption, classified in the group of inflammatory resorptions and starting sub-gingivally at the cervical root surface of the tooth. Although the aetiology remains uncertain, several predisposing factors have been assessed, such as trauma, intra-oral bleaching, surgery, periodontal root scaling, bruxism and orthodontics. Heithersay (1999a) identified that of all potential predisposing factors, orthodontics was the most common sole factor: when a group of 222 patients displaying varying degrees of invasive cervical resorption was analysed, orthodontics constituted 21.2% of the patients and 24% of the teeth examined. Brezniai & Wasserstein (2002a,b) proposed that the term orthodontically induced inflammatory root resorption is more accurate to describe this pathologic consequence of orthodontic tooth movement, which should be distinct from the other type of root resorption.

Often, there are no obvious clinical signs and the condition is only detected radiographically. However, where the lesion is visible, the clinical features may vary from a small defect at the gingival margin to a pink discoloration of the tooth crown (Heithersay 1999b). Furthermore, this condition is associated with inflammation of the periodontal tissues and does not involve the pulp of the tooth. In our study, even if patients were highly motivated, cervical root resorption was present. We cannot, however, rule out the possibility that resorption would have been more severe if patients showed a poor hygiene level.

Because no differences in the periodontal parameters were found between experimental and control teeth, we may assume that plaque, BOP and PPD have no prognostic effect on cervical root resorption as a consequence of orthodontic tooth movement. Although teeth were selected to exclude any external or predisposition to resorption and were carefully extracted using forceps, resorption craters were evident in seven pre-molars of the control group (six pre-molars with moderate resorption and one pre-molar with severe resorption). This demonstrates that resorption could be a naturally occurring physiologic phenomenon. Other studies involving the identification of molecules associated with and/or responsible for root resorption during orthodontic tooth movement may be necessary.

In conclusion, cervical root resorption is a common sequela of orthodontic treatment. All the orthodontically moved teeth showed moderate and/or severe resorption on the cervical part of the buccal side. Periodontal parameters did not seem to be associated with root resorption, as no changes were observed clinically during the experimental trial.

References

Address:
Catherine Giannopoulou
Department of Periodontology
Dental School
University of Geneva
Rue Barthelémy-Menn 19
1205 Geneva
Switzerland
E-mail: Ekaterini.Giannopoulou@medecine.unige

Clinical Relevance

Scientific rationale for the study:
Cervical root resorption is a common sequela of orthodontic treatment associated with inflammation of the periodontal tissues. Nevertheless, prediction and prevention are still impossible.

Principal findings: All orthodontically moved teeth showed signs of cervical resorption. However, no relationship could be demonstrated between resorption and periodontal parameters.

Practical implications: Routine periodontal parameters are unrelated to cervical root resorption resulting from orthodontic tooth movement.