Abstract

Introduction: Previous micro–computed tomography analyses of root canal preparation provided data that were usually averaged over canal length. The aim of this study was to compare preparation effects on apical root canal geometry. Methods: Sixty extracted maxillary molars (180 canals) used in prior studies were reevaluated for analyses of the apical 4 mm. Teeth were scanned by using micro–computed tomography before and after canal shaping with FlexMaster, GT- Rotary, Lightspeed, ProFile, ProTaper, instruments or nickel-titanium K-files for hand instrumentation. Apical preparation was to a size #40 in mesiobuccal and distobuccal and #45 in palatal canals except for GT (#20) and ProTaper (#25 in mesiobuccal and distobuccal and #30 in palatal canals, respectively). Data for canal volume changes, the structure model index (quantifying canal cross sections), and untreated surface area were contrasted by using analyses of variance and Scheffe tests. Results: Mean mesiobuccal, distobuccal, and palatal canal volumes increased after preparation (P < .05), but differences were noted for preparation techniques. GT rendered the smallest (0.20 mm³) changes, the structure model index (quantifying canal cross sections), and untreated surface area were contrasted by using analyses of variance and Scheffe tests. Results: Mean mesiobuccal, distobuccal, and palatal canal volumes increased after preparation (P < .05), but differences were noted for preparation techniques. GT rendered the smallest (0.20 mm³), K-files and ProFile showed the largest volume increases (0.51 ± 0.20 mm³ and 0.45 ± 0.21 mm³, P < .05). All canals were slightly rounder in the apical 4 mm after preparation indicated by nonsignificant increases in structure model index. Untreated areas ranged from 4%–100% and were larger in mesiobuccal and distobuccal canals than in distobuccal ones. Preparation with GT left significantly larger untreated areas in all canal types (P < .05); among root canal types, distobuccal canals had the least amounts of untreated surface areas. Conclusions: Apical canal geometry was affected differently by 6 preparation techniques; preparations with GT instruments to an apical size #20 left more canal surface untouched, which might affect the ability to disinfect root canals in maxillary molars. (J Endod 2009;35:1056–1059)

Key Words

Micro–computed tomography, root canal disinfection, rotary instrumentation

The major goal of root canal therapy is to remove microorganisms from the root canal system to prevent or heal apical periodontitis (1). This is currently done by mechanically shaping and chemically cleaning the root canal system; subsequent root canal filling and an adequate coronal seal prevent coronal leakage and exclude potential remaining microorganisms from nutrients.

Cleaning and shaping of root canals successfully require high volumes of irrigation solutions that can only be applied to the apical root canal third after enlargement with instruments (2–4). Nickel-titanium (NiTi) rotary instruments have become an important adjunct for root canal shaping, and outcomes with these instruments are fairly predictable (5). However, there is no agreement concerning the ideal apical width of preparation (6). It has been proposed to enlarge the apical part of the root canal by 3 sizes more than the first file that bound at length (7). However, this recommendation is a matter of debate for 2 reasons (8). First, the determination of first file that binds does not correlate with the true apical dimension (9). Second, it is unclear whether enlarging by 3 sizes will adequately remove dentin circumferentially from the root canal walls (10).

On the other hand, preparing to small apical dimensions is recommended for prevention of instrumentation errors such as apical transportation and also to preserve as much radicular dentin as possible. There is conflicting evidence regarding the antimicrobial efficacy of small (ie, size #20) apical preparations (11, 12). The relationship of apical size and root canal filling is even less well-understood. Allison et al (13) suggested that a size and taper that allow a spreader to penetrate to about 1 mm from working length were promoting better sealing ability of laterally compacted gutta-percha compared with shorter spreader penetration.

Root canal anatomy was assessed before and after preparation, besides other approaches, from double-exposure radiographs (14), from cross-sections by using the technique of Bramante et al (15), and more recently from micro–computed tomography (MCT) data (16–18). The latter technique allows nondestructive and metrically exact analyses of variables such as volume, surface areas, cross-sectional shape, taper, and the fraction of prepared surface (19).

During the last decade, studies based on MCT have provided data on preparation effects for several different NiTi instruments, averaged for the full root canal length or sometimes split into root canal thirds. Although the effects shown are visually dramatic, the quantitative data are less clear. For example, comparing the instruments, it appeared that despite varying apical enlargement, there was no significant difference concerning the untreated root canal surface (16–18). One possible explanation is that the rendered data were averaged over canal lengths. Taken together with the importance of apical enlargement for canal disinfection, more detailed assessments of the apical canal section are of interest. This analysis can be done by using the existing data sets from earlier studies comparing NiTiFlex (Dentsply Maillefer, Ballaigues, Switzerland), LightSpeed (formerly by LightSpeed, San Antonio, TX), ProFile (Dentsply
Therefore, the aim of this study was to compare apical root canal shapes after preparation with 6 different NiTi instruments. Specifically, apical volumes, surface areas, cross-sectional shape, and fractions of treated surfaces were assessed in the apical 4 mm of maxillary molars.

Materials and Methods

Sixty extracted maxillary molars with 180 root canals used in previous studies (16–18) were reevaluated for analyses of the apical 4 mm. The teeth had been scanned by using an MCT system at an isotropic resolution of 34 or 39.2 μm. This was done without probing the root canals for patency to avoid modifying the canals’ apical anatomy. No attempt was made to locate or shape the second mesiobuccal canals because their anatomy was too variable for the purpose of this study. After root canal preparation the teeth were scanned again, and binary images of the root canals were constructed. The special mounting device ensured a very close approximation of the pre-preparation and postpreparation images; in a second step, iterative software-controlled actions permitted exact superimposition to allow precise evaluation of the matched root canals (19). The preparation of root canals was described earlier in detail (16–18). Briefly, the root canals in each experimental group were treated by using the following NiTi instruments: FlexMaster, GT Rotary, LightSpeed, ProFile, or ProTaper instruments for automated rotary preparation or NiTi K-files for hand instrumentation. All root canals were prefurred by using Gates-Glidden burs in descending sizes. Preparation with FlexMaster, GT Rotary, and ProFile instruments was performed in a crown-down fashion. Preparation with LightSpeed and ProTaper instruments was done according to the manufacturers’ instructions that were available for these types of instruments. NiTi K-files were used in balanced-force motion and stepped back to size #80 after apical preparation. Apical preparation size was #40 in mesiobuccal and distobuccal and #45 in palatal canals with FlexMaster, LightSpeed, ProFile, and NiTi K-file instruments. Instrumentation with GT Rotary resulted in apical size #20 .06 in mesiobuccal and distobuccal and #20 .08 or #20 .10 in palatal canals. Preparation with ProTaper enlarged the apical root canals to size #25 .08 (F2) in mesiobuccal and distobuccal and #30 .09 (F3) in palatal canals.

In a first step, the earlier collected data for overall volume of the root canals before preparation were statistically compared with each other to exclude any differences between groups. Evaluation of the matched root canals in this study then focused on the apical 4 mm. Increases in volume were calculated by subtracting the scores for the untreated surfaces if the full canal lengths were compared (Fig. 1). Combining data from earlier studies resulted in statistically similar areas among experimental groups (P < .01, Figure 1).

In a two-way ANOVA, both the instrument used (P < .001) and the canal (P < .004) were significant explanatory variables for the amount of untreated area. Again, GT preparation left more untreated area (P < .01); distobuccal canals had less untreated areas compared with mesiobuccal and palatal canals (P < .01). A recalculation combining data from earlier studies resulted in statistically similar areas of untreated surfaces if the full canal lengths were compared (Fig. 1).

Discussion

The main aim of this article was to extend and combine findings on the basis of MCT reconstructions, specifically assessing changes in geometry in the apical-most sections by different instruments used in recommended sequences. Although there were subtle differences in apical volumes after preparation, the amounts of apical untreated surface were significantly higher after GT preparation to an apical size #20 compared with the other 5 techniques used.

Three of the 6 instrument systems used in the current study have undergone some design changes during the last years; GT changed into GTX (Dentsply Tulsa Dental), LightSpeed into LightSpeed LX, and ProTaper into ProTaper Universal. We would not expect significant differences for the outcome of this study when using these newly designed instruments, because desired overall canal shapes following manufacturers’ guidelines are expected to be similar. Moreover, the sparse available information directly comparing these instruments suggests similar shaping potential (14).

The basis for the data presented here was a series of 3 studies (16–18) with identical methodology based on MCT. This allowed a larger number of teeth (n = 60) to be compared in one study. However, the number of specimens was still comparably low, and hence we found relatively large SDs. Moreover, for the outcome variables, relative data with
TABLE 1. Changes in Canal Volume and SMI Comparing Preoperative and Postoperative Reconstructed Canal Models in the Apical 4 mm (n = 168)

<table>
<thead>
<tr>
<th></th>
<th>FlexMaster (N = 25)</th>
<th>GT (N = 30)</th>
<th>Lightspeed (N = 30)</th>
<th>Hand (N = 30)</th>
<th>Profile (N = 30)</th>
<th>ProTaper (N = 23)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ΔVolume (mm³)</td>
<td>0.33 ± 0.12</td>
<td>0.20 ± 0.14</td>
<td>0.39 ± 0.24</td>
<td>0.51 ± 0.20a</td>
<td>0.45 ± 0.21b</td>
<td>0.31 ± 0.35</td>
</tr>
<tr>
<td>Roots</td>
<td>P < db ≤ mb</td>
<td>P < mb ≤ db</td>
<td>P ≤ mb < db</td>
<td>P < db ≤ mb</td>
<td>P < mb < db</td>
<td>mb ≤ db < P</td>
</tr>
<tr>
<td>ΔSMI</td>
<td>0.02 ± 0.22c</td>
<td>0.21 ± 0.37</td>
<td>0.37 ± 0.35</td>
<td>0.35 ± 0.54</td>
<td>0.46 ± 0.38c</td>
<td>0.31 ± 0.25</td>
</tr>
<tr>
<td>Roots</td>
<td>mb ≤ P < db</td>
<td>mb ≤ db < P</td>
<td>mb < db < P</td>
<td>mb < db < P</td>
<td>db < P < mb</td>
<td>db ≤ mb < P</td>
</tr>
</tbody>
</table>

Significantly different values are denoted by the same superscript letter (P < .01). Ranking of values when data were split into canal types is also indicated.

The full canal length. Data for full canal length are recalculated from references 16–18; in contrast to the present study, significant increases in cross-section roundness were seen specifically for the full lengths of mesiobuccal canals. One explanation for this difference is a rounder cross section in unprepared apical root canal thirds. Data from histologic cross sections (10, 25, 26) might be compared with the parameter unprepared canal surface area. Data from both methods suggest that although complete mechanical canal preparation (ie, 100% prepared surface) might not be attainable, the amount of prepared surface area depends on apical canal size.

Root canal disinfection is critical for endodontic outcomes (1) and is provided by a combination of mechanical preparation and irrigation. Both elements depend on canal enlargement, but there is disagreement about the needed degree of enlargement. For example, McGurkin-Smith et al (12) found inferior canal disinfection for canal preparation with GT rotaries to an apical size #20 compared with earlier studies by the same group (27). However, other authors found that apical sizes #20 with taper .10 but not #20 .06 were sufficiently promoting canal debridement (28), and that canal taper was positively correlated with debris removal by using ultrasonically activated irrigation (29). Moreover, current recommendations for the GT system, now available as GTX, include the use of rotaries in apical sizes #30 and #40 whenever preoperative canal anatomy permits. This is in line with our observations indicating limited canal wall preparation with an apical size #20. Rotary instruments with a restricted selection of apical sizes might be complemented with K-files or other instruments in a hybrid technique to more adequately address various apical canal geometries.

Antibacterial efficacy was not directly determined in the present study. Because mechanical preparation might affect bacterial biofilms (30) more than microorganisms in their planktonic state, it seems desirable to quantify the amount of removed biofilm by using MCT. With further improvement in hardware and software, such analyses might be feasible in the near future.

In conclusion, apical canal geometry was affected differently by 6 preparation techniques. Preparations with GT instruments to an apical size #20 left more canal surface untouched, which might affect the ability to disinfect root canals in maxillary molars.

References