Mineral Trioxide Aggregate Repair of a Perforating Internal Resorption in a Mandibular Molar

Maarten Meire, DDS, MSc, and Roeland De Moor, DDS, PhD, MSc

Abstract
Internal resorption is a rare condition in permanent teeth that poses difficulties for treatment. The challenge is complicated further if the resorption extends beyond the confines of the root. This article describes treatment of a perforating internal resorption in the mesial root of a second lower molar, with adjacent destruction of the alveolar bone. After cleaning the root canal space and the resorption lacuna by mechanical instrumentation, irrigation, and interim calcium hydroxide dressing, the defect was filled with mineral trioxide aggregate, and the canals were obturated conventionally with gutta percha and epoxy resin sealer. At a 2-year follow-up examination, no clinical abnormalities were found, and complete resolution of the alveolar bone lesion and establishment of a new periodontal ligament were observed. (J Endod 2008;34:220–223)

Key Words
Internal root resorption, mineral trioxide aggregate, periradicular periodontitis, root canal

A 32-year-old white man was referred to the Endodontic Department of the Ghent University Dental Clinic because of a resorptive lesion in the mesial root of the lower left second molar. The lesion was discovered on a periapical radiograph, which was taken by the referring dentist because of vague pain in this quadrant. Clinical examination revealed tooth 18 to be slightly tender to percussion. All teeth in this quadrant responded normally to cold testing except 18, which was unresponsive. The tooth was positive on electric pulp testing, as were the other teeth in the quadrant. The periodontal condition was excellent, with no gingivitis and absence of pocket depths exceeding 2 mm. The medical history was noncontributory.

Radiographic examination revealed tooth 18 to be slightly tender to percussion. All teeth in this quadrant responded normally to cold testing except 18, which was unresponsive. The tooth was positive on electric pulp testing, as were the other teeth in the quadrant. The periodontal condition was excellent, with no gingivitis and absence of pocket depths exceeding 2 mm. The medical history was noncontributory.

Radiographic examination revealed a well-circumscribed, fairly oval radiolucency in the cervical third of the mesial root next to a crescent-shaped radiolucent lesion in the alveolar bone (Fig. 1A).

Based on the radiographic findings, the lesion was diagnosed as a perforating internal resorption, and root canal therapy was initiated. The tooth was isolated under local anesthesia. The mesial root was accessed by using a conventional procedure. Root canal instrumentation was performed with ProTaper Sx and Gates

doi:10.1016/j.joen.2007.11.011

Copyright © 2008 by the American Association of Endodontists.
Glidden Burs (Maillefer Dentsply, Baillaigues, Switzerland) and irrigation with 2.5% sodium hypochlorite, a large resorptive cavity was observed in the coronal third of the mesiolingual root (Fig. 2B). Length determination was performed electronically using the Apex Finder AFA Model 7005 (EIE Analytic Technology, Orange, CA) and radiographically (Fig. 1B), and the two mesial and distal canals were cleaned and shaped provisionally. Calcium hydroxide (Ultracal XS; Ultradent Products Inc., South Jordan, UT) was placed as a temporary dressing because the granulation tissue could not be removed completely by mechanical instrumentation.

The calcium hydroxide paste was changed 2 weeks later. In a third office visit 3 weeks later, the resorptive cavity was completely free of pulpal tissue. Communication with the external root surface was evident. While the mesiolingual canal was sealed with a paper point, white MTA (Maillefer Dentsply) was condensed into the resorption cavity using a nonsurgical MTA carrier (Micro Apical Placement System, Produits Dentaires, Vevey, Switzerland) and root canal pluggers (Maillefer Dentsply) (Fig. 2C). Again, calcium hydroxide and a temporary glass ionomer cement filling (Ketac-Fil; 3M Espe, Seefeld, Germany) were applied. In the final office visit, after checking the set of the MTA, all 3 canals were obturated with gutta percha and AH26 sealer (Detrey; Dentsply, Konstanz, Germany) using a hybrid condensation technique (a combination of apical cold lateral condensation and thermomechanical compaction using gutta condensers) (13) (Fig. 1C).

Figure 1. Periapical radiographs before, during, and after endodontic treatment of mandibular left second molar with internal resorption in mesial root. (A) Preoperative radiograph showing crescent radiolucent lesion in the alveolar bone next to a resorptive lesion in the mesial root. (B) A radiograph taken to establish working length in mesiobuccal and distal canal. (C) A radiograph taken immediately after filling of the resorption space with MTA and obturation of the root canals with gutta percha and sealer by hybrid condensation. (D) Eleven-month follow-up: healing of the mesial bone lesion is evident. (E) Two-year follow-up shows complete resolution of the radiolucency. (F) Distally angulated radiograph at 2-year follow-up.
The access cavity was restored with a glass ionomer cement filling (Ketac-Fil), and the patient was sent to the referring dentist for further coronal restoration.

After 11 months, the patient was recalled, and the tooth was found to be symptom free. No percussion sensitivity was observed, and the patient had a healthy gingiva and no periodontal pockets on probing. The periapical radiograph showed satisfactory healing of the mesial radiolucency (Fig. 1D).

At a 2-year follow-up visit, the tooth was still symptom free. There was no percussion or palpation sensitivity, and periodontal probing did not exceed 3 mm. There were no signs of gingival retraction (Fig. 2E). Furthermore, the periapical radiograph showed complete resolution of the mesial radiolucency (Fig. 1E, F).

Discussion

The lesion in this case was diagnosed as internal resorption. This diagnosis was based on radiographic examination (clearly defined margins, uniform density, and root canal walls appear to balloon out) and clinical (inability to probe the defect via the periodontal ligament) features and was confirmed on entering the mesial canal system. The tissue in the mesiobuccal root entrance, when viewed microscopically, had a different texture than normal pulp tissue. It filled a large cavity confluent with the root canal, which was inconsistent with external root resorption in which the pulp space is usually not involved (14, 15).

Although most internal resorptive lesions are symmetrically distributed over the root, the location in this case was rather eccentric. This has also been described by other authors (7, 16). Furthermore, radioluclucency in the alveolar bone, next to the cavity, was present, although the root contained only vital pulp tissue. Apparently, the process had destroyed the lamina dura and engaged on the cancellous bone.

We chose not to enlarge the entrance to the mesiolingual canal excessively for reasons of tooth substance preservation. However, this decision complicated the mechanical debridement of the resorptive cavity. The use of calcium hydroxide proved to be an effective aid in addition to mechanical instrumentation because its tissue-dissolving effect allowed remaining tissue to be flushed away after the calcium hydroxide paste had been in situ for several weeks. These tissue-dissolving properties are well documented in the literature (17).

Different approaches exist in the treatment of a perforating internal resorption. Root canal therapy combined with surgical correction may be the only option in some cases (18, 19). Remineralization therapy with calcium hydroxide, which forms a hard tissue matrix against which to condense the root-filling material, has been advocated by others (20). Application of MTA at the perforation site precluded, in this case, the need for surgical intervention or prolonged treatment with calcium hydroxide. MTA provided good sealing of the defect, subsequently allowing a conventional root canal–filling technique. More importantly, the biologic response to this material was excellent, and complete resolution of the alveolar bone lesion had occurred by the time of a follow-up visit 2 years after the procedure. Indeed, it has been shown that MTA stimulates the propagation of human osteoblasts by offering a biologically active substrate for the cells (11). By contrast, materials previously used to repair perforations (eg, amalgam, Cavit (3M ESPE, Seefeld, Germany), Super-EBA (Harry J. Bosworth Co., Skokie, IL),

Figure 2. Clinical images of mandibular left second molar with internal resorption in mesial root. (A) The view of the pulp chamber after gaining access; superficial necrosis was observed. (B) The view of the resorption cavity showing extension beyond the confines of the root. (C) The resorptive cavity has been filled with MTA. (D) The clinical image of the tooth at the 2-year follow-up.
glass ionomers) have been associated with formation of a fibrous connective tissue capsule in contact with the adjacent bone. The formation of a periodontal defect has been a common finding adjacent to these materials. No periodontal pocketing was observed in this case.

Unfortunately, at both follow-up visits, it was noted that a final restoration had not been placed. In this case, a full cuspal coverage in the form of a crown would have been appropriate. The need for permanent coronal restoration was once more pointed out to both the patient and referring dentist.

The surgical operation microscope was believed to be a very valuable tool in managing this nonsurgical perforation repair. The magnification and illumination allowed good assessment of the cleanliness of the resorptive cavity and proper placement of the repair material. Furthermore, specially designed equipment such as the Micro Apical Placement system facilitated this action.

The case presented here was successful both clinically and radiographically. There was complete healing of the radiolucency in the alveolar bone and a continued absence of pathologic features. After 2 years, the tooth remained asymptomatic, and the patient was satisfied because he was able to keep the tooth.

References