An ex vivo evaluation of a new root canal irrigation technique with intracanal aspiration

Y. Fukumoto, I. Kikuchi, T. Yoshioka, C. Kobayashi & H. Suda
Pulp Biology and Endodontics, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan

Abstract

Aim To evaluate the effectiveness of a new root canal irrigation technique with intracanal aspiration in removing the smear layer and to assess irrigant extrusion ex vivo.

Methodology Thirty-five instrumented canals of extracted human canine teeth that had been resected apically by removing 3 mm of the root tip were divided into one control and four experimental groups of seven teeth each. The roots were fixed in a plastic case and surrounded with normal saline agar coloured with 1% acid red. No irrigation was performed in the control teeth. Each root canal in the experimental groups was irrigated with 9 mL of 14% ethylenediaminetetraacetic acid for 3 min, and then with 6 mL of 6% sodium hypochlorite (NaOCl) for 2 min. In the intracanal aspiration technique, the irrigant was delivered from the tip of an injection needle placed 12 mm from the apical root-end and an aspiration needle that was connected to a Root ZX™ apex locator placed 2 and 3 mm short of the apical root-end in groups 1 and 2, respectively. In the conventional method, the tip of an injection needle used for delivery of the irrigant and as an active electrode was placed 2 and 3 mm short of the apical root-end in groups 3 and 4, respectively, the tip of the aspiration needle was placed 12 mm from the apical root-end in these groups. The readings of the Root ZX™ during irrigation were recorded. The cleanliness of the canal was evaluated by scoring smear layer from scanning electron microscopy (SEM) images of the canal. Extrusion of NaOCl was detected by measuring the discoloured area of the agar around the apical root-end. The data obtained were statistically analysed by one-way ANOVA, the Kruskal–Wallis test and Friedman’s test.

Results In the SEM study, the canals in groups 1–3 were significantly cleaner than those in the control and group 4 (P < 0.05). The mean Root ZX™ readings in groups 1–3 were approximately 0.5. The discoloured area in group 3 was significantly larger than the other groups (P < 0.05).

Conclusions Irrigation using the intracanal aspiration technique allowed more effective removal of the smear layer than that performed by the conventional method in an apically resected canine tooth. The intracanal aspiration technique produced limited extrusion of the irrigant beyond the apical foramen.

Keywords: intracanal aspiration technique, root canal irrigation, Root ZX, smear layer.

Received 4 August 2004; accepted 15 August 2005

Introduction
It is often difficult to clean the apical portion of the root canal with conventional irrigation methods, because of its complicated anatomy (Garberoglio & Becce 1994). Although the combined use of ethylenediaminetetraacetic acid (EDTA) and sodium hypochlorite (NaOCl) solutions has been recommended for the removal of smear layer from the surface of the root canal wall (Yamada et al. 1983, Cengiz et al. 1990, Garberoglio & Becce 1994), it has not been confirmed whether the irrigants affect the apical one-third of the canal. A study evaluating the efficacy of three kinds of salts of
EDTA and NaOCl delivered alternately using a Monoject syringe with a 27-gauge needle reported that the demineralization properties of the solutions were adequate in the coronal two-thirds of the canals, but were less effective in the apical third (O’Connell et al. 2000). Even after EDTA and NaOCl irrigation with a specially developed needle, which was perforated on its side and closed at the end, placed within 1 mm of the working length, it was noted that a large amount of smear layer remained in the apical region of root canals (Goldman et al. 1976, Yamada et al. 1983).

Ultrasons were introduced into root canal treatment by Richman (1957), and ultrasonic devices have been developed for root canal irrigation. Even with ultrasonic irrigation using NaOCl and EDTA, smear layer remained in the apical region of canals (Ciucchi et al. 1989, Cameron 1995). Guerisoli et al. (2002) reported that smear layer was removed from the apical third of the canals as well as from the cervical and middle thirds of the canals by EDTAC and NaOCl with a size 15 file energized by ultrasonic agitation and introduced 1 mm from the anatomical apex. However, excess cutting of canal dentine and extrusion of the irrigant beyond the apex are matters of concern (Kobayashi et al. 2003).

The mechanical and chemical effectiveness of an irrigation regimen depends on its ability to contact the entire canal system (Ciucchi et al. 1989). Although the irrigant must be in direct contact with the internal canal surfaces for effective action, it is often difficult for the irrigant to approach the apical portion of the canal because of its small diameter (Guerisoli et al. 2002). Some studies suggested that the tip of an injection needle should be placed as close as possible to the apical end of the canal for effective cleaning of the entire length of the root canal (Goldman et al. 1976, Abou-Rass & Piccinino 1982, Sedgley et al. 2005). However, if the tip of the needle is placed too close to the apical foramen, the chances of extrusion of the solution increases (Druttman & Stock 1989). Extrusion of an irrigant, such as NaOCl, often results in severe periapical tissue damage (Hülsmann & Hahn 2000, Gernhardt et al. 2004).

As an effective and safe irrigation technique for the removal of smear layer from the apical portion has not yet been established, a new irrigation technique was designed with intracanal aspiration using both an aspiration needle and an injection needle in an attempt to minimize extrusion of the irrigant through the apical foramen (Fukumoto et al. 2004, Fukumoto 2005). The aim of this study was to evaluate the effectiveness of the intracanal aspiration technique in removing smear layer and minimizing irrigant extrusion beyond the apical foramen ex vivo.

Materials and methods

The roots of 35 extracted human maxillary canine teeth preserved in 0.01% thymol solution were used; the root lengths were adjusted to 18 mm. The coronal portion of the canal was flared using Gates Glidden drills sizes 1–4 (Mani Inc., Tochigi, Japan), and canal patency confirmed using a size 10 K-file (Zipperer, Munich, Germany). The root canals were instrumented in a crown down sequence with size 20 GT™ rotary instruments in tapers increasing from 0.06 to 0.10 (Dentsply Maillefer, Ballaigues, Switzerland) driven by the Tri Auto ZX™ (Morita Co., Tokyo, Japan), and washed with 6% NaOCl solution between each instrument change. Root canal preparation was completed when the tip of the size 20, 0.10 taper GT™ rotary instrument reached the apical foramen. Then, 3 mm of the apical root was removed, so that each root was 15 mm in length and 0.5 mm in diameter at the apical foramen. After washing with 10 mL of distilled water, the root canal was filled with silicone (Examilfime™ Regularhard, GC Co., Tokyo, Japan) to avoid invasion of normal saline agar (Bacto™ Agar, Difco, Detroit, MI, USA) into the canal. The root was then secured in a plastic case (22 × 32 × 4 mm³) using self-curing resin (Unifast II, GC Co.) (Fig. 1). Normal saline agar coloured with 1% acid red (Caries Detector, Kuraray Co., Ltd., Osaka, Japan), used to evaluate the extrusion of the NaOCl solution, was poured into the plastic case. After the agar had set, the silicone material in the canal was removed with an explorer.

The specimens were randomly divided into one control and four experimental groups of seven teeth each. In the control group, no further irrigation of the root canal was performed. In groups 1 and 2, the root canal was irrigated using the intracanal aspiration technique (Fig. 1). The irrigant was delivered using a tubing pump (Masterflex® 7524-40, Cole-Parmer Instrument Co., Vernon Hills, IL, USA) at a flow rate of 3.0 mL min⁻¹. The tip of an injection needle (external diameter: 0.41 mm, internal diameter: 0.19 mm; Blunt® Nipro Co., Osaka, Japan) was placed in the canal 12 mm from the apical root-end. Another needle (external diameter: 0.55 mm, internal diameter: 0.30 mm; Terumo Co., Tokyo, Japan) was used for aspiration and connected to the Root ZX™ (Morita Co.). The Root ZX™, an electronic apex locator, uses
the ratio method that simultaneously measures the
impedance of two different frequencies, calculates the
quotient of the impedances, and expresses this quotient
in terms of metre value, which is directly related to the
position of the tip of an active electrode (Kobayashi &
Suda 1994, Kobayashi 1995). The pointed edge of the
aspiration needle was ground flat, and the tip of the
needle was placed 2 and 3 mm short of the apical root-
end (Fukumoto et al. 2004) in groups 1 and 2,
respectively. The aspiration pressure of the suction
unit (Minic-W, Shin-ei Industries, Saitama, Japan) was
maintained at −20 kPa.

In groups 3 and 4, the root canal was irrigated using
a conventional irrigation method by placing the
injection needle deep in the canal, which is the
technique generally used. An injection needle, con-
ected to the Root ZX™, was placed 2 and 3 mm short of
the apical root-end in groups 3 and 4, respectively. The
tip of the aspiration needle was placed 12 mm from
the apical root-end.

Each root canal was irrigated with 9 mL of 14%
EDTA for 3 min and then with 6 mL of 6% NaOCl for
2 min. The readings of the Root ZX™ were recorded
when they became stable. The readings recorded were
analysed statistically by one-way analysis of variance
(ANOVA), with the significance level set at 5%.

After irrigation, the colour change within the agar
was recorded by an image scanner (GT9600, Seiko
Epson Co., Tokyo, Japan). The magnitude of the
discoloured area was calculated using Photoshop®
software (version 7.0, Adobe, San Jose, CA, USA) in a
100 mm² area (316 × 316 pixels), the centre of which
was located at the apex. The ratios of the discoloured
area to the total area evaluated were analysed statis-
tically by one-way ANOVA, with the significance level
set at 5%.

Finally, the roots were removed from the case and
the root canals were washed with 10 mL of distilled
water. The apical 5 mm of each root was sectioned and
then split longitudinally into two halves in its bucco-
ingual aspect, in preparation for SEM observation. The
specimens were dehydrated in graded series of ethanol
solutions, coated with platinum and then observed
under SEM (S-4500, Hitachi High-Technologies Co.,
Tokyo, Japan) at 15 kV. Areas at 0, 1, 2 and 3 mm
from the apex were photographed at 500× magnifica-
tion.

The openings of the dentinal tubule and the structure
of the intertubular dentine in each image were assessed
in accordance with the criteria proposed by Torabinejad
et al. (2003) as follows: 0: most/all tubule openings
obscured and no dissolution of the intertubular dentine;
1: most tubules open, but no dissolution of the
intertubular dentine; 2: all tubules open, but no
dissolution of the intertubular dentine; 3: all tubules
open and partial dissolution of the intertubular dentine;
and 4: all tubules open and considerable dissolution of the intertubular dentine. The scoring was conducted by three evaluators who were blinded to the classification of the experimental groups. In the event of discrepant scores, a consensus was reached by discussion among the three evaluators. Statistical analysis was performed by the Kruskal–Wallis test and Friedman’s test, with the level of significance set at 5%.

Results

Figure 2 shows representative SEM images with scores of 2, 3 and 4. Figure 3 shows the results of the SEM observations. In the control group, the smear layer covered the surfaces of the dentinal wall, and the tubule openings could scarcely be observed in the examined area. Group 1 had the best results, and scores in this group were significantly different from those in the other groups \((P < 0.05)\). In each group, the score was significantly more favourable at a point 3 mm from the apex than the other areas evaluated \((P < 0.05)\).

Figure 4 shows the mean metre reading of Root ZX™ in each experimental group during root canal irrigation using NaOCl and EDTA. Group 4 had a significantly higher mean reading of 2.7 than the other experimental groups \((P < 0.05)\).

Figure 5 shows representative images of the colour change caused by irrigant extrusion and Fig. 6 shows the ratio of the discoloured area to the unit area evaluated after irrigation. Group 3 had a significantly higher value than the other experimental groups \((P < 0.05)\).
In general, there are relatively fewer dentinal tubules per unit area in the apical portion of the root canal wall (Whittaker & Kneale 1979). These tubules are inherently smaller, and often sclerosed (Carrigan et al. 1984), which makes it difficult to evaluate the cleanliness of the apical canal compared to the middle or coronal region. Therefore, in this study, 3 mm from the apical part of the root was removed, and the effect of root canal irrigation on the apical portion was evaluated in areas at 0, 1, 2 and 3 mm from the modified root-end. The removal of the apical constriction of these teeth also facilitated easier placement of the aspiration needle. However, the cleaning effects without an apex might be different from that of a tooth with a normal apical constriction. Further study would be necessary to apply this technique to normal teeth.

The scoring system for smear layer removal used in this study was based on the criteria proposed by Torabinejad et al. (2003). They evaluated the presence or absence of the smear layer by openings of the dentinal tubules and the occurrence of dentine erosion.

A score of 3 or 4 implied dentine erosion, with a rough appearance of the root canal wall and irregularly enlarged orifices of the dentinal tubules. This rough appearance of the dentine in the root canal wall and irregularly enlarged dentinal tubule orifices were considered morphological changes caused by decalcification of the inorganic component by EDTA and the dissolution of the organic matrix by NaOCl (Niu et al. 2002).

The results of the SEM observation (Fig. 2) suggested that root canal irrigation using the intracanal aspiration technique was as effective as the conventional irrigation method in removal of the smear layer when the tip of the injection needle was placed close to the end of the canal. This result of the conventional irrigation method supports previous reports (Goldman et al. 1976, Abou-Rass & Piccinino 1982). In the intracanal aspiration technique, the irrigant is introduced from the tip of the injection needle placed in the coronal part of the canal, and then aspirated via the tip of the aspiration needle placed close to the apex. Therefore, circumfluence of the irrigant was achieved, especially in the apical region, and the irrigation was effective for removal of smear layer. On the contrary, the irrigant could approach the root-end in group 3 because apical irrigant pressure developed by the injection needle of group 3 would be higher than that of group 4. Bradford et al. (2002) reported that greater apical pressure was developed when the tip of an injection needle was placed closer to the end of the canal.

The Root ZX™, an electronic apex locator, was developed to determine accurate canal length (Kobayashi & Suda 1993, 1994, Kobayashi 1995), and the reading of ‘0.5’ corresponds to an electrode reaching the apical constriction (Kobayashi & Suda 1993). The accuracy of the Root ZX™ in the detection of the apical constriction has been reported in many studies (Shabahang et al. 1996, Vajrabhaya & Tepmongkol 1997, Dunlap et al. 1998, Pagavino et al. 1998, Ounsi & Naaman 1999, Jenkins et al. 2001, Goldberg et al. 2002, Meares & Steiman 2002, Kielbassa et al. 2003). However, the role of the irrigant, not an injection needle, as an active electrode for a complete electrical circuit with the Root ZX™ during irrigation of a wide canal with a large foramen has not been reported previously.
In this study, the readings of the Root ZX™ were stable between 2.0 and 3.0 in all groups before delivery of the irrigant into the root canal. These readings indicated that the tip of the needle did not reach the root-end. However, during irrigation, the readings changed and became approximately ‘0.5’ in groups 1–3. As results of the SEM study suggested that the irrigant reached the root-end in these groups, it is possible that the electrolytic irrigants, NaOCl and EDTA, may have replaced the air trap between the tip of the needle and the apex in the canal and the reading became 0.5. On the contrary, in group 4, the irrigant may not have reached the root-end because the smear layer was not removed in the apical area and the reading during irrigation remained high and did not become 0.5. Thus, it appears that the reading of the Root ZX™ during irrigation represented the deepest penetration length of the irrigants, NaOCl and EDTA.

In a preliminary study, the movement of irrigant was assessed in the apical area of a transparent root canal model on a magnified view with the CCD camera (VH-8000, Keyence Co., Osaka, Japan). This transparent model made of polypropylene with an apical diameter of 0.5 mm was fixed in a plastic case and surrounded with normal saline agar. The injection needle, which was placed 2 mm from the apex in the root canal, was attached to the file holder of the Root ZX™. The irrigant, NaOCl or EDTA, was delivered into the canal. When the irrigant reached the apex, the reading of the Root ZX™ moved to ‘0.5’ from the original position that was around ‘3.0’. This preliminary study suggested that the irrigant could be regarded as an active electrode.

The colour of normal saline agar stained with 1% acid red changed because of the bleaching effect of NaOCl. Therefore, areas of discoloration indicated the presence of extruded NaOCl. The amount of extruded NaOCl in group 3 was significantly greater than that in groups 1, 2 and 4. This result suggests that extrusion of the irrigant is probably less likely when the intracanal aspiration technique is employed. The irrigant not only reached the root-end but also extruded through it in group 3. However, the irrigant extruded little when using the intracanal aspiration technique (groups 1 and 2) indicating that the irrigant could reach the root-end without extrusion in these groups. These results further support a previous report (Fukumoto et al. 2004).

It may be difficult for the conventional irrigation method to control the movement of irrigant in the apical region of the canal. Although group 3 showed the reading of the Root ZX™ to be ‘1.0’, which meant the active electrode was inside the canal, considerable extrusion of the irrigant was observed. Precise placement of the irrigant could not be monitored using the Root ZX™ in the conventional irrigation method.

The results of this study suggest that the Root ZX™ readings during the intracanal aspiration technique allowed monitoring of the apical position of the irrigant and those of groups 1 and 2 represented the most appropriate working length readings. Lussi et al. (1993) measured the electrical resistance of periapical solution in an ex vivo study of noninstrumentation technology to detect the completion of root canal preparation, but they did not make any attempt to apply this method clinically (Lussi et al. 1997). As this phenomenon was only observed when a strong electrolyte was used as an irrigant and the apical foramen was large, further research may be needed to apply this technique in clinical situations.

Conclusions

Root canal irrigation using the intracanal aspiration technique was effective in removing the smear layer in the apical region of modified root canals, without extrusion of the irrigant. The reading of the Root ZX™ during irrigation made it possible to monitor whether or not the irrigant had reached the apical end of the root canal.

References

